Skip to main content

Behavioral Analysis of Navigation Behaviors in the Drosophila Larva

  • Protocol
  • First Online:
The Making and Un-Making of Neuronal Circuits in Drosophila

Part of the book series: Neuromethods ((NM,volume 69))

  • 1055 Accesses

Abstract

Functional and anatomical dissection of neural circuits is often hindered by the complexity of such systems. With only 10,000 neurons, the central nervous system of the Drosophila larva is at least one order of magnitude simpler than its adult counterpart. Despite this numerical simplicity, the behavioral repertoire of the larva contains a surprisingly diverse array of sophisticated behaviors. Larvae demonstrate robust orientation behavior toward light and odors (phototaxis and chemotaxis). The sensory organs and circuits underlying these behaviors are greatly reduced in comparison with the adult: the larval eye is composed of just 12 photoreceptor neurons, the nose of just 21 olfactory sensory neurons. While the larval olfactory pathway displays remarkable structural similarities with the adult system its numerical simplicity facilitates the analysis of individual, genetically identifiable neurons at anatomical and functional levels. The use of information arising from different modalities allows for investigation of the principles controlling multisensory integration. In this chapter, we review a series of assays to study light and odor-driven behaviors. The advent of high-resolution machine-vision algorithms to analyze behavior in real time is likely to revolutionize our knowledge of how organization of the larval brain mediates distinct behaviors. The simplicity of the larval sensory systems allows us to aim for a comprehensive and systems-level understanding of the relationships between circuit anatomy and function, from afferent sensory neurons through to higher brain centers where orientation decisions are made and communicated to efferent motor neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster, vol xvii, 2nd edn. Springer, Berlin, p 405

    Google Scholar 

  2. Hartenstein V et al (2008) The development of the Drosophila larval brain. Adv Exp Med Biol 628:1–31

    PubMed  Google Scholar 

  3. Sprecher SG, Reichert H (2003) The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. Arthropod Struct Dev 32(1): 141–156

    PubMed  Google Scholar 

  4. Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26(7): 739–751

    PubMed  CAS  Google Scholar 

  5. Kumar A et al (2009) Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil. J Comp Neurol 517(1):87–104

    PubMed  CAS  Google Scholar 

  6. Sprecher SG, Reichert H, Hartenstein V (2007) Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain. Gene Expr Patterns 7(5):584–595

    PubMed  CAS  Google Scholar 

  7. Urbach R, Technau GM (2003) Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain. Development 130(16): 3607–3620

    PubMed  CAS  Google Scholar 

  8. Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2011) Molecular and cellular organization of the taste system in the Drosophila larva. J Neurosci 31(43):15300–15309

    PubMed  Google Scholar 

  9. Younossi-Hartenstein A et al (2006) Embryonic origin of the Drosophila brain neuropile. J Comp Neurol 497(6):981–998

    PubMed  Google Scholar 

  10. Pereanu W et al (2010) Development-based compartmentalization of the Drosophila central brain. J Comp Neurol 518(15): 2996–3023

    PubMed  Google Scholar 

  11. Bolwig N (1946) Senses and sense organs of the anterior end of the house fly larvae. Vidensk Medd Naturhist Foren 109: 81–2017

    Google Scholar 

  12. Fishilevich E et al (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15(23): 2086–2096

    PubMed  CAS  Google Scholar 

  13. Heimbeck G et al (1999) Smell and taste perception in Drosophila melanogaster larva: toxin expression studies in chemosensory neurons. J Neurosci 19(15):6599–6609

    PubMed  CAS  Google Scholar 

  14. Cobb M (1999) What and how do maggots smell? Biol Rev 74:425–459

    Google Scholar 

  15. Gerber B, Stocker RF (2007) The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 32(1):65–89

    PubMed  CAS  Google Scholar 

  16. Singh RN, Singh K (1984) Fine structure of the sensory organs of Drosophila melanogaster Meigen larva (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13(4):255–273

    Google Scholar 

  17. Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46(3):445–456

    PubMed  CAS  Google Scholar 

  18. Larsson MC et al (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43(5):703–714

    PubMed  CAS  Google Scholar 

  19. Benton R et al (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4(2):e20

    PubMed  Google Scholar 

  20. Sato K et al (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452(7190):1002–1006

    PubMed  CAS  Google Scholar 

  21. Wicher D et al (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452(7190):1007–1011

    PubMed  CAS  Google Scholar 

  22. Asahina K et al (2009) A circuit supporting concentration-invariant odor perception in Drosophila. J Biol 8(1):9

    PubMed  Google Scholar 

  23. Hoare DJ, McCrohan CR, Cobb M (2008) Precise and fuzzy coding by olfactory sensory neurons. J Neurosci 28(39):9710–9722

    PubMed  CAS  Google Scholar 

  24. Louis M et al (2008) Bilateral olfactory sensory input enhances chemotaxis behavior. Nat Neurosci 11(2):187–199

    PubMed  CAS  Google Scholar 

  25. Marin EC et al (2005) Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132(4):725–737

    PubMed  CAS  Google Scholar 

  26. Python F, Stocker RF (2002) Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J Comp Neurol 445(4):374–387

    PubMed  Google Scholar 

  27. Niessing J, Friedrich RW (2010) Olfactory pattern classification by discrete neuronal network states. Nature 465(7294):47–52

    PubMed  CAS  Google Scholar 

  28. Olsen SR, Bhandawat V, Wilson RI (2010) Divisive normalization in olfactory population codes. Neuron 66(2):287–299

    PubMed  CAS  Google Scholar 

  29. Shang Y et al (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128(3): 601–612

    PubMed  CAS  Google Scholar 

  30. Masuda-Nakagawa LM et al (2009) Localized olfactory representation in mushroom bodies of Drosophila larvae. Proc Natl Acad Sci U S A 106(25):10314–10319

    PubMed  CAS  Google Scholar 

  31. Masuda-Nakagawa LM, Tanaka NK, O’Kane CJ (2005) Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proc Natl Acad Sci U S A 102(52):19027–19032

    PubMed  CAS  Google Scholar 

  32. Ramaekers A et al (2005) Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol 15(11):982–992

    PubMed  CAS  Google Scholar 

  33. Masuda-Nakagawa LM et al (2010) Targeting expression to projection neurons that innervate specific mushroom body calyx and antennal lobe glomeruli in larval Drosophila. Gene Expr Patterns 10(7–8):328–337

    PubMed  CAS  Google Scholar 

  34. Sprecher SG, Desplan C (2008) Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 454(7203):533–537

    PubMed  CAS  Google Scholar 

  35. Kaneko M, Hall JC (2000) Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol 422(1):66–94

    PubMed  CAS  Google Scholar 

  36. Rodriguez Moncalvo VG, Campos AR (2009) Role of serotonergic neurons in the Drosophila larval response to light. BMC Neurosci 10:66

    PubMed  Google Scholar 

  37. Tix S, Minden JS, Technau GM (1989) Pre-existing neuronal pathways in the developing optic lobes of Drosophila. Development 105(4):739–746

    PubMed  CAS  Google Scholar 

  38. Asahina K, Pavlenkovich V, Vosshall LB (2008) The survival advantage of olfaction in a competitive environment. Curr Biol 18(15):1153–1155

    PubMed  CAS  Google Scholar 

  39. Aceves-Pina EO, Quinn WG (1979) Learning in normal and mutant Drosophila larvae. Science 206(4414):93–96

    PubMed  CAS  Google Scholar 

  40. Ayyub C et al (1990) Genetics of olfactory behavior in Drosophila melanogaster. J Neurogenet 6(4):243–262

    PubMed  CAS  Google Scholar 

  41. Cobb M (1996) Genotypic and phenotypic characterization of the Drosophila melanogaster olfactory mutation Indifferent. Genetics 144(4):1577–1587

    PubMed  CAS  Google Scholar 

  42. Cobb M, Bruneau S, Jallon JM (1992) Genetic and developmental factors in the olfactory response of Drosophila melanogaster larvae to alcohols. Proc Biol Sci 248(1322):103–109

    PubMed  CAS  Google Scholar 

  43. Cobb M, Dannet F (1994) Multiple genetic control of acetate-induced olfactory responses in Drosophila melanogaster larvae. Heredity 73(pt 4):444–455

    PubMed  CAS  Google Scholar 

  44. Monte P et al (1989) Characterization of the larval olfactory response in Drosophila and its genetic basis. Behav Genet 19(2):267–283

    PubMed  CAS  Google Scholar 

  45. Oppliger FY, Guerin P, Vlimant M (2000) Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gustatory one for the terminal organ in Drosophila melanogaster larvae. J Insect Physiol 46(2):135–144

    PubMed  CAS  Google Scholar 

  46. Siddiqi O (1980) Development and neurobiology of Drosophila. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Basic life sciences. Plenum Press, New York, p 496

    Google Scholar 

  47. Green CH, Burnet B, Connolly KJ (1983) Organization and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae. Anim Behav 31(1):282–291

    PubMed  CAS  Google Scholar 

  48. Godoy-Herrera R, Connolly K (2007) Organization of foraging behavior in larvae of cosmopolitan, widespread, and endemic Drosophila species. Behav Genet 37(4):595–603

    PubMed  CAS  Google Scholar 

  49. Mazzoni EO, Desplan C, Blau J (2005) Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 45(2):293–300

    PubMed  CAS  Google Scholar 

  50. Sawin-McCormack EP, Sokolowski MB, Campos AR (1995) Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. J Neurogenet 10(2):119–135

    PubMed  CAS  Google Scholar 

  51. Fraenkel GS, Gunn DL (1961) The orientation of animals. Dover Publications, New York

    Google Scholar 

  52. Berg HC (2000) Motile behavior of bacteria. Phys Today 53:24–29

    CAS  Google Scholar 

  53. Borst AA, Heisenberg M (1982) Osmotropotaxis in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 147(4):479–484

    Google Scholar 

  54. Martin H (1965) Osmotropotaxis in the honey-bee. Nature 208(5005):59–63

    Google Scholar 

  55. Gom-Marin A, Louis M (2011) Active sensation during orientation behavior in the Drosophila larva: more sense than luck. Curr Opin Neurobiol 22(2):208–215

    Google Scholar 

  56. Mathewson RF, Hodgson ES (1972) Klinotaxis and rheotaxis in orientation of sharks toward chemical stimuli. Comp Biochem Physiol A Comp Physiol 42(1): 79–84

    PubMed  CAS  Google Scholar 

  57. Porter J et al (2007) Mechanisms of scent-tracking in humans. Nat Neurosci 10(1):27–29

    PubMed  CAS  Google Scholar 

  58. Gibbons B (1986) Magazine Article Nat Geogr Mag 221(170):324–361

    Google Scholar 

  59. Schöne H (1984) Spatial orientation: the spatial control of behavior in animals and man, Princeton series in neurobiology and behaviour. Princeton University Press, Princeton, NJ, p 347

    Google Scholar 

  60. Hafez M (1950) On the behaviour and sensory physiology of the house-fly larva, Musca domestica L. I. Feeding stage. Parasitology 40(3–4):215–236

    PubMed  CAS  Google Scholar 

  61. Bala ADS, Panchal P, Siddiqi O (1998) Osmotropotaxis in larvae of Drosophila melanogaster. Curr Sci 75:48–51

    Google Scholar 

  62. Gomez-Marin A et al (2010) Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci 4:6

    PubMed  Google Scholar 

  63. Mast SO (1911) Light and the behavior of organisms, vol xi, 1st edn. Wiley, New York, p 410

    Google Scholar 

  64. Busto M, Iyengar B, Campos AR (1999) Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions. J Neurosci 19(9): 3337–3344

    PubMed  CAS  Google Scholar 

  65. Scantlebury N, Sajic R, Campos AR (2007) Kinematic analysis of Drosophila larval locomotion in response to intermittent light pulses. Behav Genet 37(3):513–524

    PubMed  Google Scholar 

  66. Pfeiffer BD et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105(28):9715–9720

    PubMed  CAS  Google Scholar 

  67. Shinomiya K et al (2010) Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons. J Comp Neurol 519(5):807–833

    Google Scholar 

  68. Hadjieconomou D et al (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8(3):260–266

    PubMed  CAS  Google Scholar 

  69. Hampel S et al (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8(3):253–259

    PubMed  CAS  Google Scholar 

  70. Cardona A et al (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8(10):e1000502

    PubMed  Google Scholar 

  71. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058

    PubMed  CAS  Google Scholar 

  72. Pauls D et al (2010) Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin. J Neurosci 30(32):10655–10666

    PubMed  CAS  Google Scholar 

  73. Branson K et al (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6(6):451–457

    PubMed  CAS  Google Scholar 

  74. Dankert H et al (2009) Automated monitoring and analysis of social behavior in Drosophila. Nat Methods 6(4):297–303

    PubMed  CAS  Google Scholar 

  75. Gershow M, Berck M, Mathew D, Luo L, Kane EA, Carlson JR, Samuel AD (2012) Controlling airborne cues to study small animal navigation. Nat Methods 9(3):290–296.

    PubMed  CAS  Google Scholar 

  76. Ramot D et al (2008) The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One 3(5):e2208

    PubMed  Google Scholar 

  77. Cronin CJ, Feng Z, Schafer WR (2006) Automated imaging of C. elegans behavior. Methods Mol Biol 351:241–251

    PubMed  Google Scholar 

  78. Ben Arous J et al (2010) Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans. J Neurosci Methods 187(2):229–234

    PubMed  Google Scholar 

  79. Leifer AM et al (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8(2):147–152

    PubMed  CAS  Google Scholar 

  80. Zinke I et al (1999) Suppression of food intake and growth by amino acids in Drosophila: the role of pumpless, a fat body expressed gene with homology to vertebrate glycine cleavage system. Development 126(23):5275–5284

    PubMed  CAS  Google Scholar 

  81. Khurana S, Abu Baker MB, Siddiqi O (2009) Odour avoidance learning in the larva of Drosophila melanogaster. J Biosci 34(4): 621–631

    PubMed  Google Scholar 

  82. Tracey WD Jr et al (2003) Painless, a Drosophila gene essential for nociception. Cell 113(2):261–273

    PubMed  CAS  Google Scholar 

  83. Neuser K et al (2005) Appetitive olfactory learning in Drosophila larvae: effects of repetition, reward strength, age, gender, assay type and memory span. Anim Behav 69(4):891–898

    Google Scholar 

  84. Benz G (1956) Der Trockenheitssinn bei Larven von Drosophila melanogaster. Experientia 12:297

    Google Scholar 

  85. Louis M, Piccinotti S, Vosshall LB (2008) High-resolution measurement of odor-driven behavior in Drosophila larvae. J Vis Exp 11:638

    PubMed  Google Scholar 

  86. Gilat A (2005) MATLAB: an introduction with applications, vol Viii, 2nd edn. Wiley, Hoboken, NJ, p 343

    Google Scholar 

  87. Gonzalez RC, Woods RE (2008) Digital image processing, vol xxii, 3rd edn. Pearson/Prentice Hall, Upper Saddle River, NJ, p 954

    Google Scholar 

  88. Lilly M, Carlson J (1990) Smellblind: a gene required for Drosophila olfaction. Genetics 124(2):293–302

    PubMed  CAS  Google Scholar 

  89. Kreher SA et al (2008) Translation of sensory input into behavioral output via an olfactory system. Neuron 59(1):110–124

    PubMed  CAS  Google Scholar 

  90. Saumweber T, Husse J, Gerber B (2010) Innate attractiveness and associative learnability of odors can be dissociated in larval Drosophila. Chem Senses 36(3):223–235

    Google Scholar 

  91. Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. Nat Neurosci 6(11):1224–1229

    PubMed  CAS  Google Scholar 

  92. Khan RM et al (2007) Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J Neurosci 27(37):10015–10023

    PubMed  CAS  Google Scholar 

  93. Gomez-Marin A, Stephens GJ, Louis M (2011) Active sampling and decision making in Drosophila chemotaxis. Nat Commun 2:441.

    PubMed  CAS  Google Scholar 

  94. Liu C et al (2010) Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol 8(8):e1000467

    PubMed  Google Scholar 

  95. Suster ML et al (2003) Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. J Neurobiol 55(2):233–246

    PubMed  CAS  Google Scholar 

  96. Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol 229(2):209–220

    PubMed  Google Scholar 

  97. Schleyer M, Saumweber T, Nahrendorf W, Fischer B, von Alpen D, Pauls D, Thum A, Gerber B (2011) A behavior-based circuit model of how outcome expectations organize learned behavior in larval Drosophila. Learn Mem 18:639

    PubMed  Google Scholar 

  98. Ribeiro C, Dickson BJ (2010) Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol 20(11):1000–1005

    PubMed  CAS  Google Scholar 

  99. Kaiser M, Cobb M (2008) The behaviour of Drosophila melanogaster maggots is affected by social, physiological and temporal factors. Anim Behav 75(5):1619–1628

    Google Scholar 

  100. Godoy-Herrera R et al (1992) The development of the photoresponse in Drosophila melanogaster larva. Rev Chil Hist Nat 65:91–101

    Google Scholar 

  101. Luo L et al (2010) Navigational decision ­making in Drosophila thermotaxis. J Neurosci 30(12):4261–4272

    Google Scholar 

  102. Roberts DB (1998) Drosophila: a practical approach, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  103. Boyle J, Cobb M (2005) Olfactory coding in Drosophila larvae investigated by cross-­adaptation. J Exp Biol 208(pt 18):3483–3491

    PubMed  Google Scholar 

  104. Colomb J et al (2007) Complex behavioural changes after odour exposure in Drosophila larvae. Anim Behav 73(4):587–594

    Google Scholar 

  105. Larkin A et al (2010) Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. Learn Mem 17(12):645–653

    PubMed  CAS  Google Scholar 

  106. Ibba I (2010) Neuroethology of olfaction in Drosophila. In: Department of plant protection biology. The Swedish University of Agricultural Sciences, Alnarp

    Google Scholar 

  107. Dekker T et al (2006) Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr Biol 16(1):101–109

    PubMed  CAS  Google Scholar 

  108. Michels B et al (2005) A role for synapsin in associative learning: the Drosophila larva as a study case. Learn Mem 12(3):224–231

    PubMed  Google Scholar 

  109. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57(5):634–660

    PubMed  CAS  Google Scholar 

  110. Simpson JH (2009) Mapping and manipulating neural circuits in the fly brain. Adv Genet 65:79–143

    PubMed  CAS  Google Scholar 

  111. Naumann EA et al (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 13(4):513–520

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

ML is thankful to the Vosshall lab where most of data for Figs. 4, 5, 6, and 7 were generated. The Louis lab acknowledges funding from the Spanish Ministry of Science and Innovation (MICINN, BFU2008-00362), and the EMBL-CRG Systems Biology Program.

Financial support to S.G.S. was provided by the Swiss National Science Foundation grant number PP00P3_123339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Sprecher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Louis, M., Phillips, M., Lopez-Matas, M., Sprecher, S. (2012). Behavioral Analysis of Navigation Behaviors in the Drosophila Larva. In: Hassan, B. (eds) The Making and Un-Making of Neuronal Circuits in Drosophila. Neuromethods, vol 69. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-830-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-830-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-829-0

  • Online ISBN: 978-1-61779-830-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics