Skip to main content

LeishCyc: A Guide to Building a Metabolic Pathway Database and Visualization of Metabolomic Data

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

Abstract

The complexity of the metabolic networks in even the simplest organisms has raised new challenges in organizing metabolic information. To address this, specialized computer frameworks have been developed to capture, manage, and visualize metabolic knowledge. The leading databases of metabolic information are those organized under the umbrella of the BioCyc project, which consists of the reference database MetaCyc, and a number of pathway/genome databases (PGDBs) each focussed on a specific organism. A number of PGDBs have been developed for bacterial, fungal, and protozoan pathogens, greatly facilitating dissection of the metabolic potential of these organisms and the identification of new drug targets. Leishmania are protozoan parasites belonging to the family Trypanosomatidae that cause a broad spectrum of diseases in humans. In this work we use the LeishCyc database, the BioCyc database for Leishmania major, to describe how to build a BioCyc database from genomic sequences and associated annotations. By using metabolomic data generated in our group, we show how such databases can be utilized to elucidate specific changes in parasite metabolism.

Equal first author contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T, Chen WH, Wodke JA, Guell M, Martinez S, Bourgeois R, Kuhner S, Raineri E, Letunic I, Kalinina OV, Rode M, Herrmann R, Gutierrez-Gallego R, Russell RB, Gavin AC, Bork P, Serrano L (2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–1268

    Article  PubMed  CAS  Google Scholar 

  2. Keseler IM, Bonavides-Martinez C, Collado-Vides J, Gama-Castro S, Gunsalus RP, Johnson DA, Krummenacker M, Nolan LM, Paley S, Paulsen IT, Peralta-Gil M, Santos-Zavaleta A, Shearer AG, Karp PD (2009) EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37:D464–D470

    Article  PubMed  CAS  Google Scholar 

  3. Nicholson DE (2000) The evolution of the IUBMB-Nicholson maps. IUBMB Life 50:341–344

    PubMed  CAS  Google Scholar 

  4. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089

    Article  PubMed  CAS  Google Scholar 

  5. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Paley S, Popescu L, Pujar A, Shearer AG, Zhang P, Karp PD (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38:D473–D479

    Article  PubMed  CAS  Google Scholar 

  6. Karp PD (2000) An ontology for biological function based on molecular interactions. Bioinformatics 16:269–285

    Article  PubMed  CAS  Google Scholar 

  7. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler IM, Caspi R (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79

    Article  PubMed  CAS  Google Scholar 

  8. Karp PD, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics 18(Suppl 1):S225–S232

    Article  PubMed  Google Scholar 

  9. Paley SM, Karp PD (2006) The Pathway Tools cellular overview diagram and Omics Viewer. Nucleic Acids Res 34:3771–3778

    Article  PubMed  CAS  Google Scholar 

  10. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36:W423–W426

    Article  PubMed  CAS  Google Scholar 

  11. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    Article  PubMed  CAS  Google Scholar 

  12. Green ML, Karp PD (2006) The outcomes of pathway database computations depend on pathway ontology. Nucleic Acids Res 34:3687–3697

    Article  PubMed  CAS  Google Scholar 

  13. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337

    Article  PubMed  CAS  Google Scholar 

  14. Christie KR, Weng S, Balakrishnan R, Costanzo MC, Dolinski K, Dwight SS, Engel SR, Feierbach B, Fisk DG, Hirschman JE, Hong EL, Issel-Tarver L, Nash R, Sethuraman A, Starr B, Theesfeld CL, Andrada R, Binkley G, Dong Q, Lane C, Schroeder M, Botstein D, Cherry JM (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res 32:D311–D314

    Article  PubMed  CAS  Google Scholar 

  15. Fey P, Gaudet P, Curk T, Zupan B, Just EM, Basu S, Merchant SN, Bushmanova YA, Shaulsky G, Kibbe WA, Chisholm RL (2009) dictyBase—a Dictyostelium bioinformatics resource update. Nucleic Acids Res 37:D515–D519

    Article  PubMed  CAS  Google Scholar 

  16. Doyle MA, MacRae JI, De Souza DP, Saunders EC, McConville MJ, Likic VA (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst Biol 3:57

    Article  PubMed  Google Scholar 

  17. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  18. Evsikov AV, Dolan ME, Genrich MP, Patek E, Bult CJ (2009) MouseCyc: a curated biochemical pathways database for the laboratory mouse. Genome Biol 10:R84

    Article  PubMed  Google Scholar 

  19. Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 14:917–924

    Article  PubMed  CAS  Google Scholar 

  20. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LR, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847

    Article  PubMed  CAS  Google Scholar 

  21. Croft SL (2001) Monitoring drug resistance in leishmaniasis. Trop Med Int Health 6:899–905

    Article  PubMed  CAS  Google Scholar 

  22. Croft SL, Coombs GH (2003) Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  PubMed  CAS  Google Scholar 

  23. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  PubMed  CAS  Google Scholar 

  24. Albert MA, Haanstra JR, Hannaert V, Van Roy J, Opperdoes FR, Bakker BM, Michels PA (2005) Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem 280:28306–28315

    Article  PubMed  CAS  Google Scholar 

  25. Bakker BM, Krauth-Siegel RL, Clayton C, Matthews K, Girolami M, Westerhoff HV, Michels PA, Breitling R, Barrett MP (2010) The silicon trypanosome. Parasitology 137:1333–1341

    Article  PubMed  CAS  Google Scholar 

  26. Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4:177

    Article  PubMed  Google Scholar 

  27. Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5:76

    Article  PubMed  Google Scholar 

  28. Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21:1881–1888

    Article  PubMed  CAS  Google Scholar 

  29. Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22:590–602

    Article  PubMed  CAS  Google Scholar 

  30. Paape D, Barrios-Llerena ME, Le Bihan T, Mackay L, Aebischer T (2010) Gel free analysis of the proteome of intracellular Leishmania mexicana. Mol Biochem Parasitol 169:108–114

    Article  PubMed  CAS  Google Scholar 

  31. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  32. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  33. Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, McConville MJ (2006) Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA 103:5502–5507

    Article  PubMed  CAS  Google Scholar 

  34. De Souza DP, Saunders EC, McConville MJ, Likic VA (2006) Progressive peak clustering in GC-MS Metabolomic experiments applied to Leishmania parasites. Bioinformatics 22:1391–1396

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the grant DP0878227 from the Australian Research Council. We thank David P. de Souza for assistance in the preparation and analysis of metabolite extracts by GC-MS. We thank Peter D. Karp for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Likić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saunders, E.C., MacRae, J.I., Naderer, T., Ng, M., McConville, M.J., Likić, V.A. (2012). LeishCyc: A Guide to Building a Metabolic Pathway Database and Visualization of Metabolomic Data. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics