Skip to main content

Real-Time Visualization and Characterization of Tumor Angiogenesis and Vascular Response to Anticancer Therapies

  • Protocol
  • First Online:
In Vivo Cellular Imaging Using Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 872))

Abstract

In vivo angiogenesis assays provide more physiologically relevant information about tumor vascularization than in vitro studies because they take the complex interactions among cancer cells, endothelial cells, mural cells, and tumor stroma into consideration. Traditional microscopic assessment of vascular density conducted by immunostaining of tissue sections or by lectin angiogram visualization of tumor vessels is invasive and requires the sacrifice of tumor-bearing animals. Therefore, it prohibits longitudinal time-course observation in a single animal and requires a large number of animals at each time point to derive statistically-meaningful observations. Additionally, heterogenous behavior among different tumors will inevitably introduce individual biological variance that may obscure reliable interpretation of the results. While various artificial in vivo angiogenesis assays, such as the Matrigel implant assay, chick chorioallatoic membrane assay, and dorsal skin fold chamber assay have been developed and employed to more directly observe the progression of physiological angiogenesis, they can not appropriately assess tumor angiogenic progression or tumor vascular regression in response to therapeutic intervention. Here, we describe a noninvasive method and a detailed protocol that we have developed and optimized using the Olympus OV-100 in vivo imaging system for real-time high-resolution visualization and assessment of tumor angiogenesis and vascular response to anticancer therapies in live animals. We show that using this approach, tumor vessels can be monitored longitudinally through the whole vasculogenesis and angiogenesis process in the same mouse. Further, morphologic changes of the same vessel prior to and after drug treatments can be captured with microscopic high resolution. Moreover, the multichannel co-imaging capability of the OV-100 allows us to analyze and compare tumor vessel permeability before and after antiangiogenesis therapy by employing a near-infrared blood pool reagent, or by visualizing improved cytotoxic drug delivery upon tumor vessel normalization by using a fluorophore tagged drug. This noninvasive method can be readily applied to orthotopically transplanted breast cancer models as well as to subcutaneously-transplanted tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan, D.and Weinberg R. A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Naumov, G. N., Akslen, L. A., and Folkman, J. (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787.

    Article  PubMed  CAS  Google Scholar 

  3. Bergers, G. and Benjamin, L. E. (2003) Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410.

    Article  PubMed  CAS  Google Scholar 

  4. Burri, P. H. (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 231, 474–88. doi:10.1002/dvdy.20184.

    Article  PubMed  Google Scholar 

  5. Fukumura, D. and Jain, R. K. (2008) Imaging angiogenesis and the microenvironment. APMIS 116, 695–715.

    Article  PubMed  CAS  Google Scholar 

  6. Jain, R. K. (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62.

    Article  PubMed  CAS  Google Scholar 

  7. Staton, C. A., Stribbling, S. M., Tazzyman, S., Hughes, R., Brown, N. J., and Lewis, C. E. (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol. 85, 233–248.

    Article  PubMed  CAS  Google Scholar 

  8. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., and Ferrara, N. (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  9. Grothey, A. and Galanis, E. (2009) Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 9, 507–518.

    Article  Google Scholar 

  10. Kerbel, R. and Folkman, J. (2002) Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., et al. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844.

    Article  PubMed  CAS  Google Scholar 

  12. Rowinsky, E. K. (2004) Targeting the molecular target of rapamycin (mTOR). Curr Opin Oncol. 16, 564–575

    Article  PubMed  CAS  Google Scholar 

  13. Noh, W. C., Mondesire, W. H., Peng, J., Jian, W., Zhang, H., Dong, J., et al. (2004) Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res. 10, 1013–1023.

    Google Scholar 

  14. Phung, T. L., Ziv, K., Dabydeen, D., Eyiah-Mensah, G., Riveros, M., Perruzzi, C., et al. (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10, 159–170.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, Q., Bindokas, V.P., Shen, J., Fan, H., Hoffman, R.M., Xing, H.R. (2011) Time course imaging of therapeutic functional tumor vascular normalization by anti-angiogenic agents. Mol. Cancer Ther. 10, 1173–1184.

    Article  PubMed  CAS  Google Scholar 

  16. Xing, H. R., Cordon-Cardo, C., Deng, X., Tong, W., Campodonico, L., Fuks, Z., et al. (2003) Pharmacologic inactivation of kinase suppressor of ras-1 abrogates Ras-mediated pancreatic cancer. Nat. Med. 9, 1266–1268.

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg, J. I., Shields, D. J., Barillas, S. G., Acevedo, L. M., Murphy, E., Huang, J., et al. (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809–813.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rosie Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xing, H.R., Zhang, Q. (2012). Real-Time Visualization and Characterization of Tumor Angiogenesis and Vascular Response to Anticancer Therapies. In: Hoffman, R. (eds) In Vivo Cellular Imaging Using Fluorescent Proteins. Methods in Molecular Biology, vol 872. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-797-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-797-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-796-5

  • Online ISBN: 978-1-61779-797-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics