Skip to main content

In Vivo Imaging of Oligonucleotide Delivery

  • Protocol
  • First Online:
In Vivo Cellular Imaging Using Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 872))

Abstract

RNA interference (RNAi) has rapidly become a powerful tool for drug-target discovery and therapeutics. Cancer is an important application for RNAi therapeutics, since abnormal gene regulation is thought to contribute to the pathogenesis and maintenance of the metastatic phenotype of cancer. Many oncogenic genes present enticing therapeutic target possibilities for RNAi. Small interfering RNA (siRNA) and microRNA (miRNA) are potent and specific examples of RNAi are able to silence tumor-related genes and multiple oncogenic pathways and appear to be a rational approach to inhibit tumor growth. In subsequent in vivo studies, an appropriate animal model must be developed for a better evaluation of gene-silencing effects on tumors. How to evaluate the effect of siRNA and miRNA in an in vivo therapeutic model is also important. Bioluminescence imaging is an optical imaging method that can evaluate RNAi in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bass, B.L. (2000) Double-stranded RNA as a template for gene silencing. Cell 101, 235–238.

    Article  PubMed  CAS  Google Scholar 

  2. Mcmanus, M.T. and Sharp, P.A. (2003) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737–747.

    Article  Google Scholar 

  3. Shankar, P., Manjunath, N., and Lieberman, J. (2005) The prospect of silencing disease using RNA interference. JAMA 293, 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  4. Leung, R.K., Whittaker, P.A. (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107, 222–239.

    Article  PubMed  CAS  Google Scholar 

  5. Behlke, M.A. (2006) Progress towards in vivo use of siRNAs. Mol Ther 13, 644–670.

    Article  PubMed  CAS  Google Scholar 

  6. Dykxhoorn, D.M., Palliser, D., and Lieberman, J. (2006) The silent treatment: siRNAs as small molecule drugs. Gene Ther 13, 541–552.

    Article  PubMed  CAS  Google Scholar 

  7. Rayburn, E.R., Wang, H., and Zhang, R. (2006) Antisense-based cancer therapeutics: are we there yet? Expert Opin Emerg Drugs 11, 337–352.

    Article  PubMed  CAS  Google Scholar 

  8. Hagan, J.P. and Croce, C.M. (2007) MicroRNAs in carcinogenesis. Cytogenet Genome Res 118, 252–259.

    Article  PubMed  CAS  Google Scholar 

  9. Jiang, J., Gusev, Y., Aderca, I., Mettler, T.A., Nagorney, D.M., Brackett, D.J., Roberts, L.R., and Schmittgen, T.D. (2008) Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 14, 419–427

    Article  PubMed  CAS  Google Scholar 

  10. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  11. Osaki, M., Takeshita, F., and Ochiya, T. (2008) MicroRNA as biomarkers and therapeutic drugs in human cancer. Biomarkers 13, 658–670.

    Article  PubMed  CAS  Google Scholar 

  12. Minakuchi, Y., Takeshita, F., Kosaka, N., Sasaki, H., Yamamoto, Y., Kouno, M., Honma, K., Nagahara, S., Hanai, K., Sano, A., Kato, T., Terada, M., and Ochiya, T. (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32:e109.

    Article  PubMed  Google Scholar 

  13. Takeshita, F., Minakuchi, Y., Nagahara, S., Honma, K., Sasaki, H., Hirai, K., Teratani, T., Namatame, N., Yamamoto, Y., Hanai, K., Kato, T., Sano, A., and Ochiya, T. (2005) Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 102, 12177–12182.

    Article  PubMed  CAS  Google Scholar 

  14. Honma, K., Iwao-Koizumi, K., Takeshita, F., Yamamoto, Y., Yoshida, T., Nishio, K., Nagahara, S., Kato, K., and Ochiya, T. (2008) RPN2 gene confers docetaxel resistance in breast cancer. Nat Med 14, 939–948.

    Article  PubMed  CAS  Google Scholar 

  15. Takei, Y., Kadomatsu, K., Goto, T., and Muramatsu, T. (2006) Combinational antitumor effect of siRNA against midkine and paclitaxel on growth of human prostate cancer xenografts. Cancer, 107, 864–873.

    Article  PubMed  CAS  Google Scholar 

  16. Vooijs, M., Jonkers, J., Lyons, S., and Berns, A. (2002) Cancer Res 62, 1862–1867.

    PubMed  CAS  Google Scholar 

  17. Hoffman, R.M. (1999) Orthotopic transplant mouse models with green fluorescent protein-expressing cancer cells to visualize metastasis and angiogenesis. Cancer and Metastasis Reviews 17, 271–277.

    Article  CAS  Google Scholar 

  18. Hoffman, R.M. (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17, 343–359.

    Article  PubMed  CAS  Google Scholar 

  19. Hoffman, R.M. (2002) In vivo imaging of metastatic cancer with fluorescent proteins. Cell Death Differ 9, 786–789.

    Article  PubMed  CAS  Google Scholar 

  20. Hoffman, R.M. (2005) Orthotopic metastatic (MetaMouse) models for discovery and development of novel chemotherapy. Methods Mol Med 111, 297–322.

    PubMed  CAS  Google Scholar 

  21. Nakanishi, H., Ito, S., Mochizuki, Y., and Tatematsu, M. (2005) Evaluation of chemosensitivity of micrometastases with green fluorescent protein gene-tagged tumor models in mice. Methods Mol Med 111, 351–362.

    PubMed  Google Scholar 

  22. Hennig, R., Ventura, J., Segersverd, R., Ward, E., Ding, X.Z., Rao, S.M., Jovanovic, B.D., Iwamura, T., Talamonti, M.S., Bell, R.H. Jr, and Adrian, T.E. (2005) LY293111 improves efficacy of gemcitabine therapy on pancreatic cancer in a fluorescent orthotopic model in athymic mice. Neoplasia 7, 417–425.

    Article  PubMed  CAS  Google Scholar 

  23. Contag, P.R., Olomu, I.N., Stevenson, D.K., and Contag, C.H. (1998) Bioluminescent indicators in living mammals. Nat Med 4, 245–247.

    Article  PubMed  CAS  Google Scholar 

  24. Rehemtulla, A., Stegman, L.D., Cardozo, S.J., Gupta, S., Hall, D.E., Contag, C.H., and Ross, B.D. (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2, 491–495.

    Article  PubMed  CAS  Google Scholar 

  25. Jenkins, DE, Oei, Y, Hornig, YS, Yu, S.F., Dusich, J., Purchio, T., and Contag, P.R. (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20, 733–744.

    Article  PubMed  CAS  Google Scholar 

  26. Vooijs, M., Jonkers, J., Lyons, S., and Bernes, A. (2002) Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res 62, 1862–1867.

    PubMed  CAS  Google Scholar 

  27. Lyons, S.K. (2005) Advances in imaging mouse tumor models in vivo. J Pathol 205,194–205.

    Article  PubMed  CAS  Google Scholar 

  28. Laurie, N.A., Gray, J.K., Zhang, J., Leggas, M., Relling, M., Egorin, M., Stewart, C., and Dyer, M.A. (2005) Topotecan combination chemotherapy in two new rodent models of retinobrastoma. Clin Cancer Res 11, 7569–7578.

    Article  PubMed  CAS  Google Scholar 

  29. Takeshita, F., Bader, A.G., Osaki, M., Takahashi, R., Yamamoto, Y., Kosaka, N., Kawamata, M., Kelnar, K., Brown, D., and Ochiya, T. (2010) Systemic delivery of miR-16 for RNAi therapy in prostate cancer. Mol Ther 18, 181–187.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for the Third-Term Comprehensive 10-Year Strategy for Cancer Control, a Grant-in-Aid for Scientific Research on Priority Areas Cancer from the Ministry of Education, Culture, Sports, Science and Technology, and the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio), and a Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ochiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Takeshita, F., Takahashi, Ru., Onodera, J., Ochiya, T. (2012). In Vivo Imaging of Oligonucleotide Delivery. In: Hoffman, R. (eds) In Vivo Cellular Imaging Using Fluorescent Proteins. Methods in Molecular Biology, vol 872. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-797-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-797-2_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-796-5

  • Online ISBN: 978-1-61779-797-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics