Skip to main content

Application of Photochemical Cross-linking to the Study of Oligomerization of Amyloidogenic Proteins

  • Protocol
  • First Online:
Amyloid Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 849))

Abstract

Assembly of amyloidogenic proteins into toxic oligomers and fibrils is an important pathogenic feature of over 30 amyloid-related diseases. Understanding the structures and mechanisms involved in the assembly process is necessary for rational approaches geared at inhibiting formation of these toxic species. Here, we review the application of photo-induced cross-linking of unmodified proteins (PICUP) to two disease-related amyloidogenic proteins (1) islet amyloid polypeptide (IAPP), whose toxic oligomers are thought to cause the demise of pancreatic β-cells in type-2 diabetes mellitus and (2) α-synuclein, which aggregates into toxic oligomers and precipitates in Lewy bodies in Parkinson’s disease. PICUP is an effective method allowing chemical “freezing” of dynamically changing oligomers and subsequent study of the oligomer size distribution that existed before cross-linking. The method has provided insights into the factors controlling early oligomerization, which could not be obtained by other means. We discuss sample preparation, experimental details, optimization of parameters, and troubleshooting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Measuring the concentration immediately after dissolution is essential because as proteins aggregate, the absorbance values vary compared with the freshly dissolved proteins. Hence, for aggregating proteins, it is recommended to measure the concentration immediately after dissolution in appropriate buffer.

References

  1. Selkoe, D. J. (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol. 6, 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  2. Cooper, G. J., Willis, A. C., Clark, A., Turner, R. C., Sim, R. B., and Reid, K. B. (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA 84, 8628–8632.

    Article  PubMed  CAS  Google Scholar 

  3. Westermark, P., Wernstedt, C., Wilander, E., Hayden, D. W., O’Brien, T. D., and Johnson, K. H. (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA 84, 3881–3885.

    Article  PubMed  CAS  Google Scholar 

  4. Martinez-Alvarez, R. M., Volkoff, H., Cueto, J. A., and Delgado, M. J. (2008) Molecular characterization of calcitonin gene-related peptide (CGRP) related peptides (CGRP, amylin, adrenomedullin and adrenomedullin-2/intermedin) in goldfish (Carassius auratus): cloning and distribution. Peptides 29, 1534–1543.

    Article  PubMed  CAS  Google Scholar 

  5. Kahn, S. E., Andrikopoulos, S., and Verchere, C. B. (1999) Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48, 241–253.

    Article  PubMed  CAS  Google Scholar 

  6. Hull, R. L., Westermark, G. T., Westermark, P., and Kahn, S. E. (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3629–3643.

    Article  PubMed  CAS  Google Scholar 

  7. Clark, A., Cooper, G. J., Lewis, C. E., Morris, J. F., Willis, A. C., Reid, K. B., and Turner, R. C. (1987) Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 2, 231–234.

    Article  PubMed  CAS  Google Scholar 

  8. Kapurniotu, A. (2001) Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. Biopolymers 60, 438–459.

    Article  PubMed  CAS  Google Scholar 

  9. Lorenzo, A., Razzaboni, B., Weir, G. C., and Yankner, B. A. (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368, 756–760.

    Article  PubMed  CAS  Google Scholar 

  10. Kapurniotu, A., Bernhagen, J., Greenfield, N., Al-Abed, Y., Teichberg, S., Frank, R. W., Voelter, W., and Bucala, R. (1998) Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide. Eur. J. Biochem. 251, 208–216.

    Article  PubMed  CAS  Google Scholar 

  11. Saafi, E. L., Konarkowska, B., Zhang, S., Kistler, J., and Cooper, G. J. (2001) Ultrastructural evidence that apoptosis is the mechanism by which human amylin evokes death in RINm5F pancreatic islet β-cells. Cell Biol. Int. 25, 339–350.

    Article  PubMed  CAS  Google Scholar 

  12. Muthusamy, K., Arvidsson, P. I., Govender, P., Kruger, H. G., Maguire, G. E., and Govender, T. (2010) Design and study of peptide-based inhibitors of amylin cytotoxicity. Bioorg. Med. Chem. Lett. 20, 1360–1362.

    Article  PubMed  CAS  Google Scholar 

  13. Engel, M. F., Khemtemourian, L., Kleijer, C. C., Meeldijk, H. J., Jacobs, J., Verkleij, A. J., de Kruijff, B., Killian, J. A., and Hoppener, J. W. (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc. Natl. Acad. Sci. USA 105, 6033–6038.

    Article  PubMed  CAS  Google Scholar 

  14. Khemtemourian, L., Killian, J. A., Hoppener, J. W., and Engel, M. F. (2008) Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type 2 diabetes mellitus. Exp. Diabetes Res. 2008, 421287.

    Article  PubMed  Google Scholar 

  15. Sparr, E., Engel, M. F., Sakharov, D. V., Sprong, M., Jacobs, J., de Kruijff, B., Hoppener, J. W., and Killian, J. A. (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett. 577, 117–120.

    Article  PubMed  CAS  Google Scholar 

  16. Kirkitadze, M. D., Bitan, G., and Teplow, D. B. (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567–577.

    Article  PubMed  CAS  Google Scholar 

  17. Li, H., Murakami, K., Rahimi, A. F., Maiti, P., Sinha, S., and Bitan, G. (2009) Amyloids and Protein Aggregation–Analytical Methods, in Encyclopedia of Analytical Chemistry (Sagi, I., Ed.), John Wiley: Chichester. DOI: 10.1002/9780470027318.a9038.

    Google Scholar 

  18. Fancy, D. A., and Kodadek, T. (1999) Chemistry for the analysis of protein-protein interactions: Rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl. Acad. Sci. USA 96, 6020–6024.

    Article  PubMed  CAS  Google Scholar 

  19. Bitan, G., and Teplow, D. B. (2004) Rapid photochemical cross-linking–a new tool for studies of metastable, amyloidogenic protein assemblies. Acc. Chem. Res. 37, 357–364.

    Article  PubMed  CAS  Google Scholar 

  20. Piening, N., Weber, P., Hogen, T., Beekes, M., Kretzschmar, H., and Giese, A. (2006) Photo-induced crosslinking of prion protein oligomers and prions, Amyloid 13, 67–77.

    Article  PubMed  CAS  Google Scholar 

  21. Li, H. T., Lin, X. J., Xie, Y. Y., and Hu, H. Y. (2006) The early events of α-synuclein oligomerization revealed by photo-induced cross-linking, Protein Peptide Lett. 13, 385–390.

    Article  Google Scholar 

  22. Padrick, S. B., and Miranker, A. D. (2002) Islet amyloid: Phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41, 4694–4703.

    Article  PubMed  CAS  Google Scholar 

  23. Rahimi, A. F., Shanmugam, A., and Bitan, G. (2008) Structure–Function Relationships of Pre-Fibrillar Protein Assemblies in Alzheimer’s Disease and Related Disorders. Curr. Alzheimer Res. 5, 319–341.

    Article  PubMed  CAS  Google Scholar 

  24. Stine, W. B., Jr., Dahlgren, K. N., Krafft, G. A., and LaDu, M. J. (2003) In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278, 11612–11622.

    Article  PubMed  CAS  Google Scholar 

  25. Rahimi, F., Maiti, P., and Bitan, G. (2009) Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J. Vis. Exp., 23, http://www.jove.com/index/details.stp?id=1071.

  26. Rahimi, F., Murakami, K., Summers, J. L., Chen, C. H., and Bitan, G. (2009) RNA aptamers generated against oligomeric Aβ40 recognize common amyloid aptatopes with low specificity but high sensitivity. PLoS One 4, e7694.

    Article  PubMed  Google Scholar 

  27. Bitan, G., Lomakin, A., and Teplow, D. B. (2001) Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 276, 35176–35184.

    Article  PubMed  CAS  Google Scholar 

  28. Spillantini, M. G., and Goedert, M. (2000) The α-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann. N. Y. Acad. Sci. 920, 16–27.

    Article  PubMed  CAS  Google Scholar 

  29. Spillantini, M. G., Crowther, R. A., Jakes, R., Cairns, N. J., Lantos, P. L., and Goedert, M. (1998) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208.

    Article  PubMed  CAS  Google Scholar 

  30. Kazantsev, A. G., and Kolchinsky, A. M. (2008) Central role of α-synuclein oligomers in neurodegeneration in Parkinson disease. Arch. Neurol. 65, 1577–1581.

    Article  PubMed  Google Scholar 

  31. van Rooijen, B. D., Claessens, M. M., and Subramaniam, V. (2010) Membrane interactions of oligomeric α-synuclein: potential role in Parkinson’s disease. Curr. Protein Pept. Sci. 11, 334–342.

    Article  PubMed  Google Scholar 

  32. Caughey, B., and Lansbury, P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.

    Article  PubMed  CAS  Google Scholar 

  33. Bitan, G., Kirkitadze, M. D., Lomakin, A., Vollers, S. S., Benedek, G. B., and Teplow, D. B. (2003) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA 100, 330–335.

    Article  PubMed  CAS  Google Scholar 

  34. Bitan, G., Fradinger, E. A., Spring, S. M., and Teplow, D. B. (2005) Neurotoxic protein ­oligomers–what you see is not always what you get. Amyloid 12, 88–95.

    Article  PubMed  Google Scholar 

  35. Hepler, R. W., Grimm, K. M., Nahas, D. D., Breese, R., Dodson, E. C., Acton, P., Keller, P. M., Yeager, M., Wang, H., Shughrue, P., Kinney, G., and Joyce, J. G. (2006) Solution state characterization of amyloid β-derived ­diffusible ligands. Biochemistry 45, 15157–15167.

    Article  PubMed  CAS  Google Scholar 

  36. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., and Lansbury, P. T., Jr. (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715.

    Article  PubMed  CAS  Google Scholar 

  37. Ono, K., Condron, M. M., and Teplow, D. B. (2009) Structure-neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA 106, 14745–14750.

    Article  PubMed  CAS  Google Scholar 

  38. Fradinger, E. A., Monien, B. H., Urbanc, B., Lomakin, A., Tan, M., Li, H., Spring, S. M., Condron, M. M., Cruz, L., Xie, C. W., Benedek, G. B., and Bitan, G. (2008) C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 105, 14175–14180.

    Article  PubMed  CAS  Google Scholar 

  39. Li, H., Monien, B. H., Lomakin, A., Zemel, R., Fradinger, E. A., Tan, M., Spring, S. M., Urbanc, B., Xie, C. W., Benedek, G. B., and Bitan, G. (2010) Mechanistic investigation of the inhibition of Aβ42 assembly and neurotoxicity by Aβ42 C-terminal fragments. Biochemistry 49, 6358–6364.

    Article  PubMed  CAS  Google Scholar 

  40. Rahimi, F., and Bitan, G. (2010) Selection of aptamers for amyloid β-protein, the causative agent of Alzheimer’s disease, J. Vis. Exp. 39, http://www.jove.com/index/details.stp?id=1955.

  41. Vollers, S. S., Teplow, D. B., and Bitan, G. (2005) Determination of Peptide oligomerization state using rapid photochemical crosslinking. Methods Mol. Biol. 299, 11–18.

    PubMed  CAS  Google Scholar 

  42. Bitan, G. (2006) Structural study of metastable amyloidogenic protein oligomers by photo-induced cross-linking of unmodified proteins. Methods Enzymol. 413, 217–236.

    Article  PubMed  CAS  Google Scholar 

  43. Fezoui, Y., Hartley, D. M., Harper, J. D., Khurana, R., Walsh, D. M., Condron, M. M., Selkoe, D. J., Lansbury, P. T., Fink, A. L., and Teplow, D. B. (2000) An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7, 166–178.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from American Health Assistance Foundation (A2008-350), the Jim Easton Consortium for Alzheimer’s Drug Discovery and Biomarker Development at UCLA, UCLA Center for Gene-Environment Studies in Parkinson’s Disease, and the Michael J. Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Bitan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lopes, D.H.J., Sinha, S., Rosensweig, C., Bitan, G. (2012). Application of Photochemical Cross-linking to the Study of Oligomerization of Amyloidogenic Proteins. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 849. Humana Press. https://doi.org/10.1007/978-1-61779-551-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-551-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-550-3

  • Online ISBN: 978-1-61779-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics