Skip to main content

Towards a Four-Dimensional View of Neutrophils

  • Protocol
  • First Online:
Leucocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 844))

Abstract

Neutrophils are constitutively produced throughout adult life and are essential for host responses to many types of pathogen. Neutropenia has long been associated with poor prognosis in the clinic, yet we have an incomplete understanding of their life cycle, not only during homeostasis but also during infection and chronic inflammation. Here, we review recent advances that provide insight into the genetic and biochemical regulators of neutrophil production, function, and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dale, D.C., Boxer, L., Liles, W.C. (2008) The phagocytes: neutrophils and monocytes, Blood 112, 935–45.

    Article  PubMed  CAS  Google Scholar 

  2. Nathan, C. (2006) Neutrophils and immunity: challenges and opportunities, Nat Rev Immunol 6, 173–82.

    Article  PubMed  CAS  Google Scholar 

  3. Segal, A.W. (2005) How neutrophils kill microbes, Annu Rev Immunol 23, 197–223.

    Article  PubMed  CAS  Google Scholar 

  4. Summers, C., Rankin, S.M., Condliffe, A.M. et al. (2010) Neutrophil kinetics in health and disease, Trends Immunol 31, 318–24.

    Article  PubMed  CAS  Google Scholar 

  5. Soehnlein, O., Lindbom, L. (2010) Phagocyte partnership during the onset and resolution of inflammation, Nat Rev Immunol 10, 427–39.

    Article  PubMed  CAS  Google Scholar 

  6. Hager, M., Cowland, J.B., Borregaard, N. (2010) Neutrophil granules in health and disease, J Intern Med 268, 25–34.

    PubMed  CAS  Google Scholar 

  7. Woodfin, A., Voisin, M.B., Nourshargh, S. (2010) Recent developments and complexities in neutrophil transmigration, Curr Opin Hematol 17, 9–17.

    Article  PubMed  Google Scholar 

  8. Bodey, G.P., Buckley, M., Sathe, Y.S. et al. (1966) Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia, Ann Intern Med 64, 328–40.

    PubMed  CAS  Google Scholar 

  9. Navarini, A.A., Lang, K.S., Verschoor, A. et al. (2009) Innate immune-induced depletion of bone marrow neutrophils aggravates systemic bacterial infections, Proc Natl Acad Sci USA 106, 7107–12.

    Article  PubMed  CAS  Google Scholar 

  10. Tate, M.D., Deng, Y.M., Jones, J.E. et al. (2009) Neutrophils ameliorate lung injury and the development of severe disease during influenza infection, J Immunol 183, 7441–50.

    Article  PubMed  CAS  Google Scholar 

  11. Stout-Delgado, H.W., Du, W., Shirali, A.C. et al. (2009) Aging promotes neutrophil-induced mortality by augmenting IL-17 production during viral infection, Cell Host Microbe 6, 446–56.

    Article  PubMed  CAS  Google Scholar 

  12. Bradley, T.R. and Metcalf, D. (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44, 287–99.

    Article  PubMed  CAS  Google Scholar 

  13. Ichikawa, Y., Pluznik, D.H. and Sachs, L. (1966) In vitro control of the development of macrophage and granulocyte colonies, Proc Natl Acad Sci USA 56, 488–95.

    Article  PubMed  CAS  Google Scholar 

  14. Nicola, N.A., Metcalf, D., Matsumoto, M. et al. (1983) Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor, J Biol Chem 258, 9017–23.

    Google Scholar 

  15. Lieschke, G.J., Grail, D., Hodgson, G. et al. (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization, Blood 84, 1737–46.

    PubMed  CAS  Google Scholar 

  16. Eyles, J.L., Hickey, M.J., Norman, M.U. et al. (2008) A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis, Blood 112, 5193–201.

    Article  PubMed  CAS  Google Scholar 

  17. Ferretti, S., Bonneau, O., Dubois, G.R. et al. (2003) IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger, J Immunol 170, 2106–12.

    PubMed  CAS  Google Scholar 

  18. Li, L., Huang, L., Vergis, A.L. et al. (2010) IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury, J Clin Invest 120, 331–42.

    Article  PubMed  CAS  Google Scholar 

  19. Hoshino, A., Nagao, T., Nagi-Miura, N. et al. (2008) MPO-ANCA induces IL-17 production by activated neutrophils in vitro via classical complement pathway-dependent manner, J Autoimmun 31, 79–89.

    Article  PubMed  CAS  Google Scholar 

  20. Cua, D.J., and Tato C.M. (2010) Innate IL-17-producing cells: the sentinels of the immune system, Nat Rev Immunol 10, 479–89.

    Article  PubMed  CAS  Google Scholar 

  21. Stark, M.A., Huo, Y., Burcin, T.L. et al. (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17, Immunity 22, 285–94.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, F., Poursine-Laurent, J., Wu, H.Y. et al. (1997) Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation, Blood 90, 2583–90.

    PubMed  CAS  Google Scholar 

  23. Lee, C., Raz, R., Gimeno, R. et al. (2002) STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation, Immunity 17, 63–72.

    Article  PubMed  CAS  Google Scholar 

  24. Hermans, M.H., Van De Geijn, G.J., Antonissen, C. et al. (2002) Signaling mechanisms coupled to tyrosines in the granulocyte colony-stimulating factor receptor orchestrate G-CSF-induced expansion of myeloid progenitor cells, Blood 101, 2584–90.

    Article  PubMed  Google Scholar 

  25. Schmitz, J., Weissenbach, M., Haan, S. et al. (2000) SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130, J Biol Chem 275, 12848–56.

    Article  PubMed  CAS  Google Scholar 

  26. Nicholson, S.E., De Souza, D., Fabri, L.J. et al. (2000) Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130, Proc Natl Acad Sci USA 97, 6493–8.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, J.G., Farley, A., Nicholson, S.E. et al. (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation, Proc Natl Acad Sci USA 96, 2071–6.

    Article  PubMed  CAS  Google Scholar 

  28. Croker, B.A., Mielke, L.A., Wormald, S. et al. (2008) Socs3 maintains the specificity of biological responses to cytokine signals during granulocyte and macrophage differentiation, Exp Hematol 36, 786–98.

    Article  PubMed  CAS  Google Scholar 

  29. Croker, B.A., Metcalf, D., Robb, L. et al. (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis, Immunity 20, 153–65.

    Article  PubMed  CAS  Google Scholar 

  30. Croker, B.A., Krebs, D.L., Zhang, J.G. et al. (2003) SOCS3 negatively regulates IL-6 signaling in vivo, Nat Immunol 4, 540–5.

    Article  PubMed  CAS  Google Scholar 

  31. Yasukawa, H., Ohishi, M., Mori, H. et al. (2003) IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages, Nat Immunol 4, 551–6.

    Article  PubMed  CAS  Google Scholar 

  32. Lang, R., Pauleau, A.L., Parganas, E. et al. (2003) SOCS3 regulates the plasticity of gp130 signaling, Nat Immunol 4, 546–50.

    Article  PubMed  CAS  Google Scholar 

  33. Wong, P.K., Egan, P.J., Croker, B.A. et al. (2006) SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis, J Clin Invest 116, 1571–81.

    Article  PubMed  CAS  Google Scholar 

  34. Shouda, T., Yoshida, T., Hanada, T. et al. (2001) Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis, J Clin Invest 108, 1781–8.

    PubMed  CAS  Google Scholar 

  35. Jackson, S.H., Gallin, J.I., Holland, S.M. (1995) The p47phox mouse knock-out model of chronic granulomatous disease, J Exp Med 182, 7518.

    Google Scholar 

  36. Dinauer, M.C., Orkin, S.H., Brown, R. et al. (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex, Nature 327, 71720.

    Google Scholar 

  37. Teahan, C., Rowe, P., Parker, P. et al. (1987) The X-linked chronic granulomatous disease gene codes for the beta-chain of cytochrome b-245, Nature 327, 7201.

    Google Scholar 

  38. Quie, P.G., White, J.G., Holmes, B. et al. (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood, J Clin Invest 46, 66879.

    Google Scholar 

  39. Belaaouaj, A., McCarthy, R., Baumann, M. et al. (1998) Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis, Nat Med 4, 6158.

    Google Scholar 

  40. Tkalcevic, J., Novelli, M., Phylactides, M. et al. (2000) Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G, Immunity 12, 20110.

    Google Scholar 

  41. MacIvor, D.M., Shapiro, S.D., Pham, C.T. et al. (1999) Normal neutrophil function in cathepsin G-deficient mice, Blood 94, 428293.

    Google Scholar 

  42. Reeves, E.P., Lu, H., Jacobs, H.L. et al. (2002) Killing activity of neutrophils is mediated through activation of proteases by K  +  flux, Nature 416, 2917.

    Google Scholar 

  43. Clark, R.A., Stone, P.J., El Hag, A. et al. (1981) Myeloperoxidase-catalyzed inactivation of alpha 1-protease inhibitor by human neutrophils, J Biol Chem 256, 334853.

    Google Scholar 

  44. Klebanoff, S.J., Kinsella, M.G., Wight, T.N. (1993) Degradation of endothelial cell matrix heparan sulfate proteoglycan by elastase and the myeloperoxidase-H2O2-chloride system, Am J Pathol 143, 907–17.

    PubMed  CAS  Google Scholar 

  45. Pham, C.T., Ivanovich, J.L., Raptis, S.Z. et al. (2004) Papillon-Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans, J Immunol 173, 7277–81.

    PubMed  CAS  Google Scholar 

  46. Coeshott, C., Ohnemus, C., Pilyavskaya, A. et al. (1999) Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3, Proc Natl Acad Sci USA 96, 6261–6.

    Article  PubMed  CAS  Google Scholar 

  47. Greten, F.R., Arkan, M.C., Bollrath, J. et al. (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta, Cell 130, 918–31.

    Article  PubMed  CAS  Google Scholar 

  48. Joosten, L.A., Netea, M.G., Fantuzzi, G. et al. (2009) Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta, Arthritis Rheum 60, 3651–62.

    Article  PubMed  CAS  Google Scholar 

  49. Kessenbrock, K., Frohlich, L., Sixt, M. et al. (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin, J Clin Invest 118, 2438–47.

    PubMed  CAS  Google Scholar 

  50. Brinkmann, V., Reichard, U., Goosmann, C. et al. (2004) Neutrophil extracellular traps kill bacteria, Science 303, 1532–5.

    Article  PubMed  CAS  Google Scholar 

  51. Urban, C.F., Reichard, U., Brinkmann, V. et al. (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms, Cell Microbiol 8, 668–76.

    Article  PubMed  CAS  Google Scholar 

  52. Urban, C.F., Ermert, D., Schmid, M. et al. (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5: e1000639.

    Google Scholar 

  53. Fuchs, T.A., Abed, U., Goosmann, C. et al. (2007) Novel cell death program leads to neutrophil extracellular traps, J Cell Biol 176, 231–41.

    Article  PubMed  CAS  Google Scholar 

  54. Beiter, K., Wartha, F., Albiger, B. et al. (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps, Curr Biol 16, 401–7.

    Article  PubMed  CAS  Google Scholar 

  55. Marcos, V., Zhou, Z., Yildirim, A.O. et al. (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation, Nat Med 16, 1018–23.

    Article  PubMed  CAS  Google Scholar 

  56. Margraf, S., Logters, T., Reipen, J. et al. (2008) Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis, Shock 30, 352–8.

    Article  PubMed  CAS  Google Scholar 

  57. Logters, T., Paunel-Gorgulu, A., Zilkens, C. et al. (2009) Diagnostic accuracy of neutrophil-derived circulating free DNA (cf-DNA/NETs) for septic arthritis, J Orthop Res 27, 1401–7.

    Article  PubMed  Google Scholar 

  58. Gilligan, H.M., Bredy, B., Brady, H.R. et al. (1996) Antineutrophil cytoplasmic autoantibodies interact with primary granule constituents on the surface of apoptotic neutrophils in the absence of neutrophil priming, J Exp Med 184, 2231–41.

    Article  PubMed  CAS  Google Scholar 

  59. Chen, M., Kallenberg, C.G. (2010) ANCA-associated vasculitides-advances in pathogenesis and treatment, Nat Rev Rheumatol 6, 653–4.

    Article  PubMed  CAS  Google Scholar 

  60. Yousefi, S., Mihalache, C., Kozlowski, E. et al. (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death Differ 16, 1438–44.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, Q., Raoof, M., Chen, Y. et al. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature 464, 104–7.

    Article  PubMed  CAS  Google Scholar 

  62. Maugeri, N., Rovere-Querini, P., Evangelista, V. et al. (2009) Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and {beta}2 integrin-dependent cell clearance program, Blood 113, 5254–65.

    Article  PubMed  CAS  Google Scholar 

  63. Mathias, J.R., Perrin, B.J., Liu, T.X. et al. (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish, J Leukoc Biol 80, 1281–8.

    Article  PubMed  CAS  Google Scholar 

  64. Furze, R.C., Rankin, S.M. (2008) The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse, FASEB J 22, 3111–9.

    Article  PubMed  CAS  Google Scholar 

  65. Chtanova, T., Schaeffer, M., Han, S.J. et al. (2008) Dynamics of neutrophil migration in lymph nodes during infection, Immunity 29, 487–96.

    Article  PubMed  CAS  Google Scholar 

  66. Beauvillain, C., Delneste, Y., Scotet, M. et al. (2007) Neutrophils efficiently cross-prime naive T cells in vivo, Blood 110, 2965–73.

    Article  PubMed  CAS  Google Scholar 

  67. Tomihara, K., Guo, M., Shin, T. et al. (2010) Antigen-specific immunity and cross-priming by epithelial ovarian carcinoma-induced CD11b(+)Gr-1(+) cells, J Immunol 184, 6151–60.

    Article  PubMed  CAS  Google Scholar 

  68. Croker, B.A., Lewis, R.S., Babon, J.J. et al. (2010) Neutrophils require SHP1 to regulate IL-1{beta} production and prevent inflammatory skin disease, J Immunol 186, 1131–9.

    Article  PubMed  Google Scholar 

  69. Fridlender, Z.G., Sun, J., Kim, S. et al. (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN, Cancer Cell 16, 183–94.

    Article  PubMed  CAS  Google Scholar 

  70. De Santo, C., Arscott, R., Booth, S. et al. (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A, Nat Immunol 11, 1039–46.

    Article  PubMed  Google Scholar 

  71. Pillay, J., den Braber, I., Vrisekoop, N. et al. (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days, Blood 116, 625–7.

    Google Scholar 

  72. Paunel-Gorgulu, A., Zornig, M., Logters, T. et al. (2009) Mcl-1-mediated impairment of the intrinsic apoptosis pathway in circulating neutrophils from critically ill patients can be overcome by Fas stimulation, J Immunol 183, 6198–206.

    Article  PubMed  Google Scholar 

  73. Hogg, J.C., Chu, F., Utokaparch, S. et al. (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease, N Engl J Med 350, 2645–53.

    Article  PubMed  CAS  Google Scholar 

  74. Harper, L., Cockwell, P., Adu, D. et al. (2001) Neutrophil priming and apoptosis in anti-neutrophil cytoplasmic autoantibody-associated vasculitis, Kidney Int 59, 1729–38.

    Article  PubMed  CAS  Google Scholar 

  75. Matute-Bello, G., Martin, T.R. (2003) Science review: apoptosis in acute lung injury, Crit Care 7, 355–8.

    Article  PubMed  Google Scholar 

  76. Elbim, C., Katsikis, P.D., Estaquier, J. (2009) Neutrophil apoptosis during viral infections, Open Virol J 3, 52–9.

    Article  PubMed  CAS  Google Scholar 

  77. Colamussi, M.L., White, M.R., Crouch, E. et al. (1999) Influenza A virus accelerates neutrophil apoptosis and markedly potentiates apoptotic effects of bacteria, Blood 93, 2395–403.

    PubMed  CAS  Google Scholar 

  78. Engelich, G., White, M., Hartshorn, K.L. (2001) Neutrophil survival is markedly reduced by incubation with influenza virus and Streptococcus pneumoniae: role of respiratory burst, J Leukoc Biol 69, 50–6.

    PubMed  CAS  Google Scholar 

  79. Saez-Lopez, C., Ngambe-Tourere, E., Rosenzwajg, M. et al. (2005) Immediate-early antigen expression and modulation of apoptosis after in vitro infection of polymorphonuclear leukocytes by human cytomegalovirus, Microbes Infect 7, 1139–49.

    Article  PubMed  CAS  Google Scholar 

  80. Engelich, G., White, M., Hartshorn, K.L. (2002) Role of the respiratory burst in co-operative reduction in neutrophil survival by influenza A virus and Escherichia coli, J Med Microbiol 51, 484–90.

    PubMed  CAS  Google Scholar 

  81. Lindemans, C.A., Coffer, P.J., Schellens, I.M. et al. (2006) Respiratory syncytial virus inhibits granulocyte apoptosis through a phosphatidylinositol 3-kinase and NF-kappaB-dependent mechanism, J Immunol 176, 5529–37.

    PubMed  CAS  Google Scholar 

  82. Dibbert, B., Weber, M., Nikolaizik, W.H. et al. (1999) Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation, Proc Natl Acad Sci USA 96, 13330–5.

    Article  PubMed  CAS  Google Scholar 

  83. Hamasaki, A., Sendo, F., Nakayama, K. et al. (1998) Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene, J Exp Med 188, 1985–92.

    Article  PubMed  CAS  Google Scholar 

  84. Steimer, D.A., Boyd, K., Takeuchi, O. et al. (2009) Selective roles for antiapoptotic MCL-1 during granulocyte development and macrophage effector function, Blood 113, 2805–15.

    Article  PubMed  CAS  Google Scholar 

  85. Dzhagalov, I., St John, A., He, Y.W. (2007) The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages, Blood 109, 1620–6.

    Article  PubMed  CAS  Google Scholar 

  86. Villunger, A., Scott, C., Bouillet, P. et al. (2003) Essential role for the BH3-only protein Bim but redundant roles for Bax, Bcl-2, and Bcl-w in the control of granulocyte survival, Blood 101, 2393–400.

    Article  PubMed  CAS  Google Scholar 

  87. Villunger, A., O’Reilly, L.A., Holler, N. et al. (2000) Fas ligand, Bcl-2, granulocyte colony-stimulating factor, and p38 mitogen-activated protein kinase: Regulators of distinct cell death and survival pathways in granulocytes, J Exp Med 192, 647–58.

    Article  PubMed  CAS  Google Scholar 

  88. Liles, W.C., Kiener, P.A., Ledbetter, J.A. et al. (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils, J Exp Med 184, 429–40.

    Article  PubMed  CAS  Google Scholar 

  89. Strasser, A., Jost, P.J., Nagata, S. (2009) The many roles of FAS receptor signaling in the immune system, Immunity 30, 180–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

B.A. Croker was supported by an Australian Research Council QEII Fellowship (DP1094854). A.W. Roberts was supported by a National Health Medical Research Council (NHMRC) Australia Practitioner Fellowship (356213) and a Victorian Cancer Agency Fellowship. N.A. Nicola was supported by a NHRMC Fellowship (637300). The authors are supported by a grant from the National Institutes of Health, USA (CA022556), Australian NHMRC Grants (461219, 508905, and 637367), the Victorian State Government Operational Infrastructure Support Grant and the NHMRC Independent Research Institutes Infrastructure Support Scheme (361646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben A. Croker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Croker, B.A., Roberts, A.W., Nicola, N.A. (2012). Towards a Four-Dimensional View of Neutrophils. In: Ashman, R. (eds) Leucocytes. Methods in Molecular Biology, vol 844. Humana Press. https://doi.org/10.1007/978-1-61779-527-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-527-5_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-526-8

  • Online ISBN: 978-1-61779-527-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics