Skip to main content

Minimization and Prevention of Phage Infections in Bioprocesses

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 834))

Abstract

Phage infections in bacterial bioprocesses constitute one of the most devastating threats to the productivity of the biotechnology facilities. There are several factors, which can decide if an infection would occur, and if it would turn into an outbreak and heavy contamination of the production facility. This issue is discussed on the basis of literature survey and experience of Phage Consultants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitman, W.B., Coleman, D.C., Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA. 95, 6578–6583.

    Article  PubMed  CAS  Google Scholar 

  2. Primrose, S. B. (1990). Controlling bacteriophage infections in industrial bioprocesses, p. 1–10. In J. Reiser (ed.), Applied molecular genetics. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  3. Bogosian, G. (2006) Control of bacteriophage in commercial microbiology and fermentation facilities. In Calendar R, Abedon ST (Ed.), “The Bacteriophages. 2nd ed”., Oxford University Press, New York.

    Google Scholar 

  4. Wietzorrek, A., Schwarz, H., Herrmann, C., Braun, V. (2006) The genome of the novel phage Rtp, with a rosette-like tail tip, is homologous to the genome of phage T1 . J. Bacteriol. 188, 1419–1436.

    Article  PubMed  CAS  Google Scholar 

  5. Bruttin, A., Brüssow, H. (1996) Site-specific spontaneous deletions in three genome regions of a temperate Streptococcus thermophilus phage. Virology 219, 96–104.

    Article  PubMed  CAS  Google Scholar 

  6. Rotman, E., Amado, L., Kuzminov, A. (2010) Unauthorized horizontal spread in the laboratory environment: the tactics of Lula, a temperate lambdoid bacteriophage of Escherichia coli. PLoS One 5:e11106.

    Article  PubMed  Google Scholar 

  7. Los, M., Kuzio, J., McConnell, M.R., Kropinski, A.M., Wegrzyn, G, Christie, G.E., (2010) Lysogenic Conversion in Bacteria of Importance to the food Industry in “Bacteriophages In the Control of Food- and Waterborne Pathogens”. ASM press, Washington, DC, USA. 157–198.

    Google Scholar 

  8. Los, M., Czyz, A., Sell, E., Wegrzyn, A., Neubauer, P., Wegrzyn, G. (2004) Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J. Appl. Genet. 45, 111–120.

    PubMed  Google Scholar 

  9. Los, M. (2010). Contamination concerns. European Biopharmaceutical Review, 51, 78–80.

    Google Scholar 

  10. Ogata, S. 1980. Bacteriophage contamination in industrial processes. Biotechnol. Bioeng. 22(Suppl. 1), 177–193.

    CAS  Google Scholar 

  11. Wu,W.-W., Yoshinaga, K., Kanda, K., Kato, F., Murata, A., (1991). Phage S2, another new phage for serine-producing Eschericha coli. Bull. Fac. Agr. Saga Univ. 71, 123–132.

    CAS  Google Scholar 

  12. Wu, W.-W., Tanaka, K., Kato, F., Murata, A., (1991) Phage S1, new phage for Eschericha coli. Bull. Fac. Agr. Saga Univ. 71, 91–100.

    Google Scholar 

  13. Teuber, M., Andresen, A., Sievers, M. (1987) Bacteriophage problems in vinegar fermentations. Biotechnol. Lett. 9, 37–38.

    Article  Google Scholar 

  14. Koptides, M., Barak, I., Sisova, M., Baloghova, E., Ugorackova, J., Timko, J. (1992) Characterization of bacteriophage BFK20 from Brevibacterium flavum. J. Gen. Microbiol. 138, 1387–1391.

    PubMed  CAS  Google Scholar 

  15. Jones, D.T., Shirley, M., Wu, X., Keis, S. (2000) Acetone Butanol (AB) Fermentation Process. J. Mol. Microbiol. Biotechnol. 2, 21–26.

    PubMed  CAS  Google Scholar 

  16. Maeda, A., Ishii, K., Tanaka, M., Mikami, Y., Arai, T., (1986) KMl, a Bacteriophage of Clostvidium butyvicum J. Gen. Microbiol. 132, 2271–2275.

    CAS  Google Scholar 

  17. Bartholomew, W. H., Engstrom, D. E.,Goodman, S. S., O’Toole, A. L., Shelton, J. L.,Tannen L. P. (1974) Reduction of contamination in an industrial fermentation plant. Biotechnol Bioeng. 16, 1005–1013.

    Article  Google Scholar 

  18. Josephsen, J., Petersen, A., Neve, H., Waagner, E. (1999) Development of lytic Lactococcus lactis bacteriophages in a Cheddar cheese plant. Int. J. Food Microbiol. 50, 163–171.

    Article  CAS  Google Scholar 

  19. Seregant, K., Yeo, R.G. (1966) The production of bacteriophage m2. Biotechnol. Bioeng. 8, 195–215.

    Article  Google Scholar 

  20. Los, M., Wegrzyn, G., Neubauer, P. (2003) A role for bacteriophage T4 rI gene function in the control of phage development during pseudolysogeny and in slowly growing host cells. Res. Microbiol. 154, 547552.

    Article  PubMed  CAS  Google Scholar 

  21. Los, M., Golec, P., Los, J.M., Weglewska-Jurkiewicz, A., Czyz, A., Wegrzyn, A., Wegrzyn, G., Neubauer, P. (2007) Effective inhibition of lytic development of bacteriophages lambda, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol. 7:13.

    Article  PubMed  Google Scholar 

  22. Adams, M.H. (1959). Bacteriophages. Interscience Publishers, New York, pp. 450–456.

    Google Scholar 

  23. Los, J.M., Golec, P., Wegrzyn. G., Wegrzyn, A., Los. M. (2008). Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl. Environ. Microbiol. 74, 5113–5120.

    Article  PubMed  CAS  Google Scholar 

  24. Lilehaug, D. (1997). An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J. Appl. Microbiol. 83, 85–90.

    Article  Google Scholar 

  25. Los, M., Los, J.M., Blohm, L., Spillner, E., Grunwald, T., Albers, J., Hintsche R., Wegrzyn, G. (2005). Rapid detection of viruses using electrical biochips and anti-virion sera. Lett. Appl. Microbiol. 40, 479–85.

    Article  PubMed  CAS  Google Scholar 

  26. Los,M., Los, J.M., Wegrzyn, G. (2008). Rapid identification of Shiga toxin-producing Escherichia coli (STEC) using electric biochips. Diagn. Mol. Pathol. 17, 179–184.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, Y., Golding, I., Sawai, S., Guo, L., Cox, E.C. (2005) Population Fitness and the Regulation of Escherichia coli Genes by Bacterial Viruses. PLoS Biol. 3, 1276–1282.

    CAS  Google Scholar 

  28. Edlin, G., Lin, L., Bitner, R., (1977) Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J Virol. 21, 560–564.

    PubMed  CAS  Google Scholar 

  29. Lin, L., Bitner, R. Edlin, G. (1977), Increased Reproductive Fitness of Escherichia coli Lambda Lysogens J Virol. 21, 554–559.

    PubMed  CAS  Google Scholar 

  30. Pollard, E., Reaume, M. (1951) Thermal inactivation of bacterial viruses. Arch. Biochem. 32, 278287.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-00-008/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Los .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Los, M. (2012). Minimization and Prevention of Phage Infections in Bioprocesses. In: Cheng, Q. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 834. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-483-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-483-4_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-482-7

  • Online ISBN: 978-1-61779-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics