Skip to main content

Deciphering Tissue-Specific Ubiquitylation by Mass Spectrometry

  • Protocol
  • First Online:
Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

Protein ubiquitylation is a highly conserved, central mechanism to regulate cellular events in all eukaryotes, such as proteasomal degradation, protein trafficking, DNA repair, synaptic plasticity, and immune response. The consequence of protein ubiquitylation is modulated by the structure of ubiquitin (Ub) moiety attached on the substrates, including ubiquitin monomer and diverse polyubiquitin chains with different linkages (N-terminus, K6, K11, K27, K29, K33, K48, and K63). The development of ubiquitin-enrichment strategies coupled with sensitive mass spectrometry enables direct analysis of ubiquitylated proteins in cells, providing an invaluable tool for ubiquitin research. In this chapter, we describe recent technology updates for analyzing tissue-specific ubiquitin conjugates in transgenic models, as well as targeted proteomics methods for quantifying different polyubiquitin chain linkages in any type of ­samples, including human tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87.

    Article  PubMed  CAS  Google Scholar 

  2. Ciechanover A, Ben-Saadon R (2004) N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14:103–106.

    Article  PubMed  CAS  Google Scholar 

  3. Cadwell K, Coscoy L (2005) Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309:127–130.

    Article  PubMed  CAS  Google Scholar 

  4. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926.

    Article  PubMed  CAS  Google Scholar 

  5. Kirisako T, Kamei K, Murata S et al (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25:4877–4887.

    Article  PubMed  CAS  Google Scholar 

  6. Xu P, Duong DM, Seyfried NT et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145.

    Article  PubMed  CAS  Google Scholar 

  7. Varadan R, Assfalg M, Haririnia A et al (2004) Solution conformation of Lys63-linked di-ubiqutin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279:7055–7063.

    Article  PubMed  CAS  Google Scholar 

  8. Virdee S, Ye Y, Nguyen DP et al (2010) Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 6:750–757.

    Article  PubMed  CAS  Google Scholar 

  9. Bremm A, Freund SM, Komander D (2010) Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 17:939–947.

    Article  PubMed  CAS  Google Scholar 

  10. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616.

    Article  PubMed  CAS  Google Scholar 

  11. Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 10:659–671.

    Article  PubMed  CAS  Google Scholar 

  12. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446.

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg AL (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35:12–17.

    Article  PubMed  CAS  Google Scholar 

  14. Bandopadhyay R, de Belleroche J (2010) Pathogenesis of Parkinson’s disease: emerging role of molecular chaperones. Trends Mol Med 16:27–36.

    Article  PubMed  CAS  Google Scholar 

  15. Friedman JS, Ray JW, Waseem N et al (2009) Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am J Hum Genet 84:792–800.

    Article  PubMed  CAS  Google Scholar 

  16. Yi JJ, Ehlers MD (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 59:14–39.

    Article  PubMed  CAS  Google Scholar 

  17. Peng J, Gygi SP (2001) Proteomics: the move to mixtures. J. Mass Spectrom. 36:1083–1091.

    Article  PubMed  CAS  Google Scholar 

  18. Cravatt BF, Simon GM, Yates JR, 3 rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000.

    Google Scholar 

  19. Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627.

    Article  PubMed  CAS  Google Scholar 

  20. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439.

    Article  PubMed  CAS  Google Scholar 

  21. Matsumoto M, Hatakeyama S, Oyamada K et al (2005) Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5:4145–4151.

    Article  PubMed  CAS  Google Scholar 

  22. Vasilescu J, Smith JC, Ethier M, Figeys D (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 4:2192–2200.

    Article  PubMed  CAS  Google Scholar 

  23. Layfield R, Tooth D, Landon M et al (2001) Purification of poly-ubiquitinated proteins by S5a-affinity chromatography. Proteomics 1:773–777.

    Article  PubMed  CAS  Google Scholar 

  24. Weekes J, Morrison K, Mullen A et al (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3:208–216.

    Article  PubMed  CAS  Google Scholar 

  25. Maor R, Jones A, Nuhse TS et al (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6:601–610.

    Article  PubMed  CAS  Google Scholar 

  26. Bennett EJ, Shaler TA, Woodman B et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708.

    Article  PubMed  CAS  Google Scholar 

  27. Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7:750–757.

    Article  PubMed  CAS  Google Scholar 

  28. Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 1764:1940–1947.

    PubMed  CAS  Google Scholar 

  29. Wang X, Guerrero C, Kaiser P, Huang L (2007) Proteomics of proteasome complexes and ubiquitinated proteins. Expert Rev Proteomics 4:649–665.

    Article  PubMed  CAS  Google Scholar 

  30. Meierhofer D, Wang X, Huang L, Kaiser P (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576.

    Article  PubMed  CAS  Google Scholar 

  31. Franco M, Seyfried NT, Brand AH et al (2010) A novel strategy to isolate ubiquitin conjugates reveals wide role of ubiquitination during neural development. Mol Cell Proteomics 10:M110.002188.

    Google Scholar 

  32. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858.

    Article  PubMed  CAS  Google Scholar 

  33. Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950.

    Article  PubMed  CAS  Google Scholar 

  34. Eng J, McCormack AL, Yates JR, 3 rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spec 5:976–989.

    Google Scholar 

  35. Peng J, Elias JE, Thoreen CC et al (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein ­analysis: the yeast proteome. J Proteome Res 2:43–50.

    Article  PubMed  CAS  Google Scholar 

  36. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214.

    Article  PubMed  CAS  Google Scholar 

  37. Gerber SA, Rush J, Stemman O et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945.

    Article  PubMed  CAS  Google Scholar 

  38. Kirkpatrick DS, Hathaway NA, Hanna J et al (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8:700–710.

    Article  PubMed  CAS  Google Scholar 

  39. Xu P, Cheng D, Duong DM et al (2006) A proteomic strategy for quantifying polyubiquitin chain topologies. Isr J Chem 46:171–182.

    Article  CAS  Google Scholar 

  40. Dammer EB, Na CH, Xu P et al (2011) Polyubiquitin linkage profiles in three models of proteolytic stress suggest etiology of Alzheimer disease. J Biol Chem Epub 2011/02/01.

    Google Scholar 

  41. Nielsen ML, Vermeulen M, Bonaldi T et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460.

    Article  PubMed  CAS  Google Scholar 

  42. Tagwerker C, Flick K, Cui M et al (2006) A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions: Application in Ubiquitin Profiling and Protein Complex Identification Combined with in vivo Cross-Linking. Mol Cell Proteomics 5:737–748.

    PubMed  CAS  Google Scholar 

  43. Seyfried NT, Xu P, Duong DM et al (2008) Systematic approach for validating the ubiquitinated proteome. Anal Chem 80:4161–4169.

    Article  PubMed  CAS  Google Scholar 

  44. Peng J (2008) Evaluation of proteomic strategies for analyzing ubiquitinated proteins. BMB Rep 41:177–183.

    Article  PubMed  CAS  Google Scholar 

  45. Golebiowski F, Matic I, Tatham MH et al (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24.

    Google Scholar 

  46. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotech 28:868–873.

    Article  CAS  Google Scholar 

  47. Shi Y, Xu P, Qin J (2011) Ubiquitinated proteome: Ready for global? Mol Cell Proteomics.

    Google Scholar 

  48. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183.

    Article  PubMed  CAS  Google Scholar 

  49. Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364.

    Article  PubMed  Google Scholar 

  50. Phu L, Izrael-Tomasevic A, Matsumoto ML et al (2010) Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol Cell Proteomics Epub 2010/11/05

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Institutes of Health grant (RR025822) and the American Cancer Society grant (RSG-09-181). UM is an Ikerbasque Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mayor, U., Peng, J. (2012). Deciphering Tissue-Specific Ubiquitylation by Mass Spectrometry. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics