Skip to main content

RANKL-Mediated Osteoclast Formation from Murine RAW 264.7 cells

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 816))

Abstract

Extensive research efforts over the years have provided us with great insights into how bone-resorbing osteoclasts (OCs) develop and function and, based on such work, valuable antiresorptive therapies have been developed to help combat the excessive bone loss that occurs in numerous skeletal disorders. The RAW 264.7 murine cell line has proven to be an important tool for in vitro studies of OC formation and function, having particular advantages over the use of OCs generated from primary bone marrow cell populations or directly isolated from murine bones. These include their ready access and availability, simple culture for this pure macrophage/pre-OC population, sensitive and rapid development into highly bone-resorptive OCs expressing hallmark OC characteristics following their RANKL stimulation, abundance of RAW cell-derived OCs that can be generated to provide large amounts of study material, relative ease of transfection for genetic and regulatory manipulation, and close correlation in characteristics, gene expression, signaling, and developmental or functional processes between RAW cell-derived OCs and OCs either directly isolated from murine bones or formed in vitro from primary bone marrow precursor cells. Here, we describe methods for the culture and RANKL-mediated differentiation of RAW cells into bone-resorptive OCs as well as procedures for their enrichment, characterization, and general use in diverse analytical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roodman, G. (1996) Advances in bone biology – the osteoclast. Endocrine Rev. 17, 308–332.

    CAS  Google Scholar 

  2. Mancini, L., Moradi-Bidhendi, N., Brandi, M., Perretti, M., and McIntyre, I. (2000) Modulation of the effects of osteoprotegerin (OPG) ligand in a human leukemic cell line by OPG and calcitonin. Biochem. Biophys. Res. Commun. 279, 391–397.

    Article  PubMed  CAS  Google Scholar 

  3. Nagai, M., Kyakumoto, S., and Sato, N. (2000) Cancer cells responsible for humoral hypercalcemia express mRNA encoding a secreted form of ODF/TRANCE that induces osteoclast formation. Biochem. Biophys. Res. Commun. 269, 532–536.

    Article  PubMed  CAS  Google Scholar 

  4. Hentunen, T., Reddy, S., Boyce B. et al.,(1998) Immortalization of osteoclast precursors by targeting Bcl-XL and Simian virus 40 large T antigen to the osteoclast lineage in transgenic mice. J. Clin. Invest. 102, 88–97.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, W., and Li Y. (1998) Generation of mouse osteoclastogenic cell lines immortalized with SV40 large T antigen. J. Bone. Miner. Res. 13, 1112–1123.

    Article  PubMed  CAS  Google Scholar 

  6. Takeshita, S., Kaji, K., and Kudo, A. (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15, 1477–1488.

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi, N., Udagawa, N., and Suda, T. (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256, 449–455.

    Google Scholar 

  8. Chambers, T. (2000) Regulation of the differentiation and function of osteoclasts. J. Pathol. 192, 4–13.

    Article  PubMed  CAS  Google Scholar 

  9. Schoppet, M., Preissner, K., and Hofbauer, L. (2002) RANK ligand and osteoprotegerin. Paracrine regulators of bone metabolism and vascular function. Arterioscler. Thromb. Vasc. Biol. 22, 549–553.

    CAS  Google Scholar 

  10. Hsu, H., Lacey, D., Dunstan, C., et al (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96, 3540–3545.

    Article  PubMed  CAS  Google Scholar 

  11. Yamamoto, A., Miyazaki, T., Kadono, Y., et al (2002) Possible involvement of IkappaB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kappaB ligand. J. Bone Miner. Res. 17, 612–621.

    Article  PubMed  CAS  Google Scholar 

  12. Mizukami, J., Takaesu, G., Akatsuka, H., et al (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell Biol. 22, 992–1000.

    Article  PubMed  CAS  Google Scholar 

  13. Raschke, W., Baird, S., Ralph, P., and Nakoinz, I. (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15, 261–267.

    Article  PubMed  CAS  Google Scholar 

  14. Shadduck, R., Waheed, A., Mangan, K., and Rosenfeld, C. (1993) Preparation of a monoclonal antibody directed against the receptor for murine colony-stimulating factor-1. Exp. Hematol. 21, 515–520.

    PubMed  CAS  Google Scholar 

  15. Sells-Galvin, R., Cullison, J., Avioli, L., and Osdoby, P. (1994) Influence of osteoclasts and osteoclast-like cells on osteoblast alkaline phosphatase activity and collagen synthesis. J. Bone Miner. Res. 9, 1167–1178.

    Article  Google Scholar 

  16. Cappellen, D., Luong-Nguyen, N., Bongiovanni, S., Grenet, O., Wanke, C., and Susa, M. (2002) Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NF-kappa B. J. Biol. Chem. 277, 21971–21982.

    Article  PubMed  CAS  Google Scholar 

  17. Cassady, A., Luchin, A., Ostrowski, M., et al (2003) Regulation of the murine TRAP gene promoter. J. Bone Miner. Res. 18, 1901–1904.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe T, Kukita T, Kukita A, et al. (2004) Direct stimulation of osteoclastogenesis by MIP-1a: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J. Endocr. 180, 193–201.

    Google Scholar 

  19. Vincent, C., Kogawa, M., Findlay, D., et al (2009) The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions. J. Bone Miner. Metab. 27, 114–119.

    CAS  Google Scholar 

  20. Koseki, T., Gao, Y., Okahashi, N., et al (2002) Role of TGF-beta family in osteoclastogenesis induced by RANKL. Cell Signal 14, 31–36.

    Article  PubMed  CAS  Google Scholar 

  21. Shin, J., Kim, I., Lee, J., Koh, G., Lee, Z., and Kim, H. (2002) A novel zinc finger protein that inhibits osteoclastogenesis and the function of tumor necrosis factor receptor-associated factor 6. J. Biol. Chem. 277, 8346–8353.

    Article  PubMed  CAS  Google Scholar 

  22. Trebec-Reynolds, D., Voronov, I., Heersche, J., et al (2010) IL-1alpha and IL-1beta have different effects on formation and activity of large osteoclasts. J. Cell Biochem. 109, 975–982.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to the Drs. Xuefeng Yu and Hong Zheng for their advice and many valuable contributions to an earlier version of this chapter. This work was supported by NIH Grants AR32927, AG15435, and AR32087 to P.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Collin-Osdoby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Collin-Osdoby, P., Osdoby, P. (2012). RANKL-Mediated Osteoclast Formation from Murine RAW 264.7 cells. In: Helfrich, M., Ralston, S. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 816. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-415-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-415-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-414-8

  • Online ISBN: 978-1-61779-415-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics