Skip to main content

Inference of Regulatory Networks from Microarray Data with R and the Bioconductor Package qpgraph

  • Protocol
  • First Online:
Next Generation Microarray Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

Regulatory networks inferred from microarray data sets provide an estimated blueprint of the functional interactions taking place under the assayed experimental conditions. In each of these experiments, the gene expression pathway exerts a finely tuned control simultaneously over all genes relevant to the cellular state. This renders most pairs of those genes significantly correlated, and therefore, the challenge faced by every method that aims at inferring a molecular regulatory network from microarray data, lies in distinguishing direct from indirect interactions. A straightforward solution to this problem would be to move directly from bivariate to multivariate statistical approaches. However, the daunting dimension of typical microarray data sets, with a number of genes p several orders of magnitude larger than the number of samples n, precludes the application of standard multivariate techniques and confronts the biologist with sophisticated procedures that address this situation. We have introduced a new way to approach this problem in an intuitive manner, based on limited-order partial correlations, and in this chapter we illustrate this method through the R package qpgraph, which forms part of the Bioconductor project and is available at its Web site (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.bioconductor.org

  2. Butte AJ, Tamayo P, Slonim D et al (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U S A 97:12182–12186.

    Article  PubMed  CAS  Google Scholar 

  3. Basso K, Margolin AA, Stolovitzky G et al (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390.

    Article  PubMed  CAS  Google Scholar 

  4. Faith JJ, Hayete B, Thaden JT et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8.

    Article  PubMed  Google Scholar 

  5. Edwards D (2000) Introduction to graphical modelling. Springer, New York.

    Book  Google Scholar 

  6. Dykstra RL (1970) Establishing Positive Definiteness of Sample Covariance Matrix. Ann Math Statist 41:2153–2154.

    Article  Google Scholar 

  7. Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113.

    Article  PubMed  CAS  Google Scholar 

  8. Dobra A, Hans C, Jones B et al (2004) Sparse graphical models for exploring gene expression data. J. Multivariate. Anal. 90:196–212.

    Article  Google Scholar 

  9. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441.

    Article  PubMed  Google Scholar 

  10. Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graphical model. Biometrika 94:19–35.

    Article  Google Scholar 

  11. Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4:1–32.

    Google Scholar 

  12. de la Fuente A, Bing N, Hoeschele I et al (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565–3574.

    Article  PubMed  Google Scholar 

  13. Wille A, Bühlmann P (2006) Low-order conditional independence graphs for inferring genetic networks. Stat. Appl. Genet. Mol. Biol. 5:1.

    Google Scholar 

  14. Castelo R, Roverato A (2006) A robust procedure for Gaussian graphical model search from microarray data with p larger than n. J Mach Learn Res 7: 2621–2650.

    Google Scholar 

  15. Castelo R, Roverato A (2009) Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J Comput Biol 16:213–227.

    Article  PubMed  CAS  Google Scholar 

  16. http://www.geneontology.org

  17. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258.

    Article  PubMed  CAS  Google Scholar 

  18. Covert MW, Knight EM, Reed JL et al (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96.

    Article  PubMed  CAS  Google Scholar 

  19. Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M et al (2008) RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36:D120–124.

    Article  PubMed  CAS  Google Scholar 

  20. http://www.r-project.org

  21. http://cran.r-project.org

  22. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  PubMed  Google Scholar 

  23. Schmidberger M, Morgan M, Eddelbuettel D et al (2009) State-of-the-art in Parallel Computing with R, Journal of Statistical Software 31:i01.

    Google Scholar 

  24. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287.

    Article  PubMed  CAS  Google Scholar 

  25. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27: 861–874.

    Article  Google Scholar 

  26. Cho, B.-K., Knight, E. M., and Palsson, B. O. (2006) Transcriptional regulation of the fad regulon genes of Escherichia coli by arcA., Microbiology 152, 2207–2219.

    Article  PubMed  CAS  Google Scholar 

  27. http://www.bioconductor.org/install

  28. http://www.stats.uwo.ca/faculty/yu/Rmpi

  29. http://www.graphviz.org

Download references

Acknowledgments

This work is supported by the Spanish Ministerio de Ciencia e Innovación (MICINN) [TIN2008-00556/TIN] and the ISCIII COMBIOMED Network [RD07/0067/0001]. R.C. is a research fellow of the “Ramon y Cajal” program from the Spanish MICINN [RYC-2006-000932]. A.R. acknowledges support from the Ministero dell’Università e della Ricerca [PRIN-2007AYHZWC].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Castelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Castelo, R., Roverato, A. (2012). Inference of Regulatory Networks from Microarray Data with R and the Bioconductor Package qpgraph. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics