Skip to main content

General Consideration on Sialic Acid Chemistry

  • Protocol
  • First Online:
Carbohydrate Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., and Varki, A. (2010) Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 5, 163–176.

    PubMed  CAS  Google Scholar 

  2. Schauer, R. (2000) Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499.

    PubMed  CAS  Google Scholar 

  3. Angata, T., and Varki, A. (2002) Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 102, 439–469.

    PubMed  CAS  Google Scholar 

  4. Kiefel, M. J., and von Itzstein, M. (2002) Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chem. Rev. 102, 471–490.

    PubMed  CAS  Google Scholar 

  5. Bhattacharjee, A. K., Jennings, H. J., Kenny, C. P., Martin, A., and Smith, I. C. (1975) Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J. Biol. Chem. 250, 1926–1932.

    PubMed  CAS  Google Scholar 

  6. Paoletti, L. C., and Kasper, D. L. (2003) Glycoconjugate vaccines to prevent group B streptococcal infections. Expert Opin. Biol. Ther. 3, 975–984.

    PubMed  CAS  Google Scholar 

  7. Lewis, A. L., Cao, H., Patel, S. K., Diaz, S., Ryan, W., Carlin, A. F., Thon, V., Lewis, W. G., Varki, A., Chen, X., and Nizet, V. (2007) NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus. J. Biol. Chem. 282, 27562–27571.

    PubMed  CAS  Google Scholar 

  8. Moran, A. P., Prendergast, M. M., and Appelmelk, B. J. (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16, 105–115.

    PubMed  CAS  Google Scholar 

  9. Bhattacharjee, A. K., Jennings, H. J., Kenny, C. P., Martin, A., and Smith, I. C. (1976) Structural determination of the polysaccharide antigens of Neisseria meningitidis serogroups Y, W-135, and BO1. Can. J. Biochem. 54, 1–8.

    PubMed  CAS  Google Scholar 

  10. Crocker, P. R. (2002) Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signaling. Curr. Opin. Struct. Biol. 12, 609–615.

    PubMed  CAS  Google Scholar 

  11. Bruses, J. L., and Rutishauser, U. (2001) Roles, regulation, and mechanism of polysialic acid function during neural development. Biochimie 83, 635–643.

    PubMed  CAS  Google Scholar 

  12. Simanek, E. E., McGarvey, G. J., Jablonowski, J. A., and Wong, C. H. (1998) Selectin-carbohydrate interactions: From natural ligands to designed mimics. Chem. Rev. 98, 833–862.

    PubMed  CAS  Google Scholar 

  13. Dell, A., Morris, H. R., Easton, R. L., Patankar, M., and Clark, G. F. (1999) The glycobiology of gametes and fertilization. Biochim. Biophys. Acta 1473, 196–205.

    PubMed  CAS  Google Scholar 

  14. Choung U., Kim, W. L., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B., Tai, C. Y., Laver, W. G., and Stevens, R. C. (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690.

    Google Scholar 

  15. Eckhardt, M., Bukalo, O., Chazal, G., Wang, L., Goridis, C., Schachner, M., Gerardy-Schahn, R., Cremer, H., and Dityatev, A. (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J. Neurosci. 20, 5234–5244.

    PubMed  CAS  Google Scholar 

  16. Daniel, L., Trouillas, J., Renaud, W., Chevallier, P., Gouvernet, J., Rougon, G., and Figarella-Branger, D. (2000) Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res. 60, 80–85.

    PubMed  CAS  Google Scholar 

  17. Takano, R., Muchmore, E., and Dennis, J. W. (1994) Sialylation and malignant potential in tumour cell glycosylation mutants. Glycobiology 4, 665–674.

    PubMed  CAS  Google Scholar 

  18. Malykh, Y. N., Schauer, R., and Shaw, L. (2001) N-Glycolylneuraminic acid in human tumours. Biochimie 83, 623–634.

    PubMed  CAS  Google Scholar 

  19. Kelm, S., and Schauer, R. (1997) Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175, 137–240.

    PubMed  CAS  Google Scholar 

  20. Munday, J., Floyd, H., and Crocker, P. R. (1999) Sialic acid binding receptors (siglecs) expressed by macrophages, J. Leukoc. Biol. 66, 705–711.

    PubMed  CAS  Google Scholar 

  21. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct, Glycobiology 3, 97–130.

    PubMed  CAS  Google Scholar 

  22. Reuter, G., and Gabius, H. J. (1996) Sialic acids structure-analysis-metabolism-occurrence-recognition. Biol. Chem. Hoppe Seyler. 377, 325–342.

    PubMed  CAS  Google Scholar 

  23. Schwarzkopf, M., Knobeloch, K. P., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., Horak, I., Reutter, W., and Horstkorte, R. (2002) Sialylation is essential for early development in mice. Proc. Natl. Acad. Sci. USA 99, 5267–5270.

    PubMed  CAS  Google Scholar 

  24. Jann, B., and Jann, K. (1990) Structure and biosynthesis of the capsular antigens of Escherichia coli. Curr. Top. Microbiol. Immunol. 150, 19–42.

    PubMed  CAS  Google Scholar 

  25. Mandrell, R. E., and Apicella, M. A. (1993) Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS, Immunobiology 187, 382–402.

    PubMed  CAS  Google Scholar 

  26. Jennings, H. J. (1990) Capsular polysaccharides as vaccine candidates, Curr. Top. Microbiol. Immunol. 150, 97–127.

    PubMed  CAS  Google Scholar 

  27. Vogel, U., Claus, H., Heinze, G., and Frosch, M. (1999) Role of lipopolysaccharide sialylation in serum resistance of serogroup B and C meningococcal disease isolates. Infect. Immun. 67, 954–957.

    PubMed  CAS  Google Scholar 

  28. Masson, L., and Holbein, B. E. (1983) Physiology of sialic acid capsular polysaccharide synthesis in serogroup B Neisseria meningitidis, J. Bacteriol. 154, 728–736.

    PubMed  CAS  Google Scholar 

  29. Barry, G. T. (1959) Detection of sialic acid in various Escherichia coli strains and in other species of bacteria. Nature 183, 117–118.

    PubMed  CAS  Google Scholar 

  30. Frosch, M., Weisgerber, C., and Meyer, T. F. (1989) Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc. Natl. Acad. Sci. USA 86, 1669–1673.

    PubMed  CAS  Google Scholar 

  31. Ganguli, S., Zapata, G., Wallis, T., Reid, C., Boulnois, G., Vann, W. F., and Roberts, I. S. (1994) Molecular cloning and analysis of genes for sialic acid synthesis in Neisseria meningitidis group B and purification of the meningococcal CMP-NeuNAc synthetase enzyme. J. Bacteriol. 176, 4583–4589.

    PubMed  CAS  Google Scholar 

  32. Muhlenhoff, M., Eckhardt, M., and Gerardy-Schahn, R. (1998) Polysialic acid: three-dimensional structure, biosynthesis and function. Curr. Opin. Struct. Biol. 8, 558–564.

    PubMed  CAS  Google Scholar 

  33. Adlam C, K. J., Mugridge A, Williams JM, Lindon JC. (1987) Production of colominic acid by Pasteurella haemolytica serotype A2 organisms. FEBS Microbiol. lett. 42, 23–25.

    Google Scholar 

  34. Singhal, A., and Hakomori, S. (1990) Molecular-changes in carbohydrate antigens associated with cancer. Bioessays 12, 223–230.

    PubMed  CAS  Google Scholar 

  35. Hakomori, S. (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309–5318.

    PubMed  CAS  Google Scholar 

  36. Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., and Kimura, N. (2004) Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 95, 377–384.

    PubMed  CAS  Google Scholar 

  37. Varki, A. (2008) Sialic acids in human health and disease. Trends Mol. Med. 14, 351–360.

    PubMed  CAS  Google Scholar 

  38. Astronomo, R. D., and Burton, D. R. (2010) Carbohydrate vaccines: developing sweet solutions to sticky situations? Nature Rev. Drug Discov. 9, 308–324.

    CAS  Google Scholar 

  39. Galonic, D. P., and Gin, D. Y. (2007) Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature 446, 1000–1007.

    PubMed  CAS  Google Scholar 

  40. Hecht, M. L., Stallforth, P., Silva, D. V., Adibekian, A., and Seeberger, P. H. (2009) Recent advances in carbohydrate-based vaccines. Curr. Opin. Chem. Biol. 13, 354–359.

    PubMed  CAS  Google Scholar 

  41. Boltje, T. J., Buskas, T., and Boons, G. J. (2009) Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622.

    PubMed  CAS  Google Scholar 

  42. Corfield, A. R. S. (1982) Sialic acids: chemistry, metabolism and function. Schauer, R. ed. Springer-Verlag, New York 10, 195–261.

    Google Scholar 

  43. Vann, W. F., Tavarez, J. J., Crowley, J., Vimr, E., and Silver, R. P. (1997) Purification and characterization of the Escherichia coli K1 neuB gene product N-acetylneuraminic acid synthetase. Glycobiology 7, 697–701.

    PubMed  CAS  Google Scholar 

  44. Comb, D. G., and Roseman, S. (1960) The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid. J. Biol. Chem. 235, 2529–2537.

    CAS  Google Scholar 

  45. Rodriguez-Aparicio, L. B., Ferrero, M. A., and Reglero, A. (1995) N-Acetyl-D-neuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-D-mannosamine and pyruvate. Biochem. J. 308 ( Pt 2), 501–505.

    PubMed  CAS  Google Scholar 

  46. Warren, L., and Blacklow, R. S. (1962) Biosynthesis of N-acetyl-neuraminic acid and cytidine-5’-monophospho-N-acetyl-neuraminic acid in Neisseria meningitidis. Biochem. Biophys. Res. Commun. 7, 433–438.

    PubMed  CAS  Google Scholar 

  47. Hinderlich, S., Stasche, R., Zeitler, R., and Reutter, W. (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272, 24313–24318.

    PubMed  CAS  Google Scholar 

  48. Angata, T., Nakata, D., Matsuda, T., Kitajima, K., and Troy, F. A., 2nd. (1999) Biosynthesis of KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid). Identification and characterization of a KDN-9-phosphate synthetase activity from trout testis. J. Biol. Chem. 274, 22949–22956.

    Google Scholar 

  49. Kean, E. L. (1991) Sialic acid activation. Glycobiology 1, 441–447.

    PubMed  CAS  Google Scholar 

  50. Angata, T., Kitazume, S., Terada, T., Kitajima, K., Inoue, S., Troy, F. A., 2nd, and Inoue, Y. (1994) Identification, characterization, and developmental expression of a novel alpha 2  →  8-KDN-transferase which terminates elongation of alpha 2  →  8-linked oligo-polysialic acid chain synthesis in trout egg polysialoglycoproteins. Glycoconj. J. 11, 493–499.

    PubMed  CAS  Google Scholar 

  51. Terada, T., Kitazume, S., Kitajima, K., Inoue, S., Ito, F., Troy, F. A., and Inoue, Y. (1993) Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP:CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase. J. Biol. Chem. 268, 2640–2648.

    CAS  Google Scholar 

  52. Kawano, T., Koyama, S., Takematsu, H., Kozutsumi, Y., Kawasaki, H., Kawashima, S., Kawasaki, T., and Suzuki, A. (1995) Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J. Biol. Chem. 270, 16458–16463.

    CAS  Google Scholar 

  53. Hirschberg, C. B., Goodman, S. R., and Green, C. (1976) Sialic acid uptake by fibroblasts. Biochemistry 15, 3591–3599.

    PubMed  CAS  Google Scholar 

  54. Oetke, C., Hinderlich, S., Brossmer, R., Reutter, W., Pawlita, M., and Keppler, O. T. (2001) Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. Eur. J. Biochem. 268, 4553–4561.

    PubMed  CAS  Google Scholar 

  55. Yu, H., and Chen, X. (2007) Carbohydrate post-glycosylational modifications. Org. Biomol. Chem. 5, 865–872.

    PubMed  CAS  Google Scholar 

  56. Yu, H., Chokhawala, H., Karpel, R., Wu, B. Y., Zhang, J. B., Zhang, Y. X., Jia, Q., and Chen, X. (2005) A multifunctional Pasteurella multocida sialyltransferase: A powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618–17619.

    PubMed  CAS  Google Scholar 

  57. Yu, H., Huang, S. S., Chokhawala, H., Sun, M. C., Zheng, H. J., and Chen, X. (2006) Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: A P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew. Chem. Int. Ed. 45, 3938–3944.

    CAS  Google Scholar 

  58. Yu, H., Cheng, J. S., Ding, L., Khedri, Z., Chen, Y., Chin, S., Lau, K., Tiwari, V. K., and Chen, X. (2009) Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J. Am. Chem. Soc. 131, 18467–18477.

    PubMed  CAS  Google Scholar 

  59. Boons, G. J., and Demchenko, A. V. (2000) Recent advances in O-sialylation. Chem. Rev. 100, 4539–4565.

    PubMed  CAS  Google Scholar 

  60. Halcomb, R. L., and Chappell, M. D. (2002) Recent developments in technology for glycosylation with sialic acid, J. Carbohydr. Chem. 21, 723–768.

    CAS  Google Scholar 

  61. Schmidt, R. R., and Kinzy, W. (1994) Anomeric-oxygen activation for glycoside synthesis-the trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem. 50, 21–123.

    PubMed  CAS  Google Scholar 

  62. Haberman, J. M., and Gin, D. Y. (2001) A new C(1)-auxiliary for anomeric stereocontrol in the synthesis of alpha-sialyl glycosides. Org. Lett. 3, 1665–1668.

    PubMed  CAS  Google Scholar 

  63. Ye, X. S., Huang, X. F., and Wong, C. H. (2001) Conversion of the carboxy group of sialic acid donors to a protected hydroxymethyl group yields an efficient reagent for the synthesis of the unnatural beta-linkage. Chem. Commun., 974–975.

    Google Scholar 

  64. Okamoto, K., Kondo, T., and Goto, T. (1986) An effective synthesis of alpha-glycosides of N-acetylneuraminic acid by use of 2-beta-halo-3-beta-hydroxyl-4,7,8,9-tetra-O-acetylneuraminic acid methyl-ester. Tetrahedron Lett. 27, 5233–5236.

    CAS  Google Scholar 

  65. Ito, Y., and Ogawa, T. (1987) An efficient approach to stereoselective glycosylation of N-acetylneuraminic acid-Use of phenylselenyl group as a stereocontrolling auxilliary. Tetrahedron Lett. 28, 6221–6224.

    CAS  Google Scholar 

  66. Martichonok, V., and Whitesides, G. M. (1996) A practical method for the synthesis of sialyl alpha-glycosides. J. Am. Chem. Soc. 118, 8187–8191.

    CAS  Google Scholar 

  67. CastroPalomino, J. C., Tsvetkov, Y. E., Schneider, R., and Schmidt, R. R. (1997) 8-O-Sialylation of neuraminic acid acceptor reactivity and anomeric stereocontrol. Tetrahedron Lett. 38, 6837–6840.

    CAS  Google Scholar 

  68. Demchenko, A. V., and Boons, G. J. (1999) A novel direct glycosylation approach for the synthesis of dimers of N-acetylneuraminic acid. Chemistry-Eur. J. 5, 1278–1283.

    CAS  Google Scholar 

  69. Yu, C. S., Niikura, K., Lin, C. C., and Wong, C. H. (2001) The thioglycoside and glycosyl phosphite of 5-azido sialic acid: Excellent donors for the alpha-glycosylation of primary hydroxy groups. Angew. Chem. Int. Ed. 40, 2900–2903.

    CAS  Google Scholar 

  70. De Meo, C., Demchenko, A. V., and Boons, G. J. (2001) A stereoselective approach for the synthesis of alpha-sialosides. J. Org. Chem. 66, 5490–5497.

    PubMed  CAS  Google Scholar 

  71. Ren, C. T., Chen, C. S., and Wu, S. H. (2002) Synthesis of a sialic acid dimer derivative, 2′alpha-O-benzyl Neu5Ac-alpha-(2  →  5)Neu5Gc. J. Org. Chem. 67, 1376–1379.

    PubMed  CAS  Google Scholar 

  72. Sherman, A. A., Yudina, O. N., Shashkov, A. S., Menshov, V. M., and Nifant’ev, N. E. (2001) Synthesis of Neu5Ac- and Neu5Gc-alpha-(2  →  6’)-lactosamine 3-aminopropyl glycosides. Carbohydr. Res. 330, 445–458.

    PubMed  CAS  Google Scholar 

  73. Fujita, S., Numata, M., Sugimoto, M., Tomita, K., and Ogawa, T. (1994) Total synthesis of a modified ganglioside, de-N-acetyl GM(2). Carbohydr. Res. 263, 181–196.

    PubMed  CAS  Google Scholar 

  74. Tanaka, H., Nishiura, Y., and Takahashi, T. (2006) Stereoselective synthesis of oligo-alpha-(2,8)-sialic acids. J. Am. Chem. Soc. 128, 7124–7125.

    PubMed  CAS  Google Scholar 

  75. Crich, D., and Wu, B. L. (2008) Imposing the trans/gauche conformation on a sialic acid donor with a 5-N,7-O-oxazinanone group: effect on glycosylation stereo selectivity. Tetrahedron 64, 2042–2047.

    PubMed  CAS  Google Scholar 

  76. De Meo, C., and Priyadarshani, U. (2008) C-5 modifications in N-acetyl-neuraminic acid: scope and limitations. Carbohydr. Res. 343, 1540–1552.

    PubMed  Google Scholar 

  77. Meindl, P., and Tuppy, H. (1965) Uber synthetische ketoside der N-acetyl-D-neuraminsaure. 1. Darstellung einer reihe durch neuraminidase spaltbarer ketoside. Monatsh. Chem. 96, 802–815.

    CAS  Google Scholar 

  78. Paulsen, H., and Tietz, H. (1982) Oligosaccharide building-blocks. 43. Synthesis of trisaccharide moieties from N-acetylneuraminic acid and N-acetyllactosamine. Angew. Chem. Int. Ed. 21, 927–928.

    Google Scholar 

  79. Ogawa, T., and Sugimoto, M. (1985) Synthetic studies on cell-surface glycans. 31. Synthesis of alpha-Neu5Acp-(2-)3)-D-Gal and alpha-Neu5Acp-(2-)3)-beta-D-Galp-(1-)4)-D-Glc, Carbohydr. Res. 135, C5–C9.

    CAS  Google Scholar 

  80. Ress, D. K., and Linhardt, R. J. (2004) Sialic acid donors: Chemical synthesis and glycosylation. Curr. Org. Syn. 1, 31–46.

    CAS  Google Scholar 

  81. Schmidt, R. R., and Rucker, E. (1980) Stereoselective glycosidations of uronic-acids. Tetrahedron Lett. 21, 1421–1424.

    CAS  Google Scholar 

  82. Iwayama, Y., Ando, H., Ishida, H., and Kiso, M. (2009) A first total synthesis of ganglioside HLG-2. Chem-Eur. J. 15, 4637–4648.

    CAS  Google Scholar 

  83. Ando, H., Koike, Y., Koizumi, S., Ishida, H., and Kiso, M. (2005) 1,5-Lactamized sialyl acceptors for various disialoside syntheses: Novel method for the synthesis of glycan portions of Hp-S6 and HLG-2 gangliosides. Angew. Chem. Int. Ed. 44, 6759–6763.

    CAS  Google Scholar 

  84. Tanaka, H., Nishiura, Y., and Takahashi, T. (2009) Stereoselective synthesis of alpha(2,9) di- to tetrasialic acids, using a 5,4-N,O-carbonyl protected thiosialoside. J. Org. Chem. 74, 4383–4386.

    PubMed  CAS  Google Scholar 

  85. Tanaka, H., Nishiura, Y., and Takahashi, T. (2008) An efficient convergent synthesis of GP1c ganglioside epitope. J. Am. Chem. Soc. 130, 1724–7125.

    Google Scholar 

  86. Kondo, H., Ichikawa, Y., and Wong, C. H. (1992) Beta-sialyl phosphite and phosphoramidite-synthesis of CMP-sialic acid and sialyl oligosaccharides. J. Am. Chem. Soc. 114, 8748–8750.

    CAS  Google Scholar 

  87. Martin, T. J., and Schmidt, R. R. (1992) Eficient sialylation with phophite as leaving group. Tetrahedron Lett. 33, 6123–6126.

    CAS  Google Scholar 

  88. Hsu, C. H., Chu, K. C., Lin, Y. S., Han, J. L., Peng, Y. S., Ren, C. T., Wu, C. Y., and Wong, C. H. Highly alpha-selective sialyl phosphate donors for efficient preparation of natural sialosides. Chemistry-Eur. J. 16, 1754–1760.

    Google Scholar 

  89. Cai, S. T., and Yu, B. (2003) Efficient sialylation with phenyltrifluoroacetimidates as leaving groups. Org. Lett. 5, 3827–3830.

    PubMed  CAS  Google Scholar 

  90. Yu, B. A., and Sun, J. S. (2010) Glycosylation with glycosyl N-phenyltrifluoroacetimidates (PTFAI) and a perspective of the future development of new glycosylation methods. Chem. Commun. 46, 4668–4679.

    CAS  Google Scholar 

  91. Tanaka, K., Goi, T., and Fukase, K. (2005) Highly efficient sialylation towards alpha(2–3)- and alpha(2–6)-Neu5Ac-Gal synthesis: Significant ‘fixed dipole effect’ of N-phthalyl group on alpha-selectivity. Synlett, 2958–2962.

    Google Scholar 

  92. Garcia, B. A., Poole, J. L., and Gin, D. Y. (1997) Direct glycosylations with 1-hydroxy glycosyl donors using trifluoromethanesulfonic anhydride and diphenyl sulfoxide. J. Am. Chem. Soc. 119, 7597–7598.

    CAS  Google Scholar 

  93. Haberman, J. M., and Gin, D. Y. (2003) Dehydrative sialylation with C2-hemiketal sialyl donors. Org. Lett. 5, 2539–2541.

    PubMed  CAS  Google Scholar 

  94. Ferrero, M. A., and Aparicio, L. R. Biosynthesis and production of polysialic acids in bacteria. Appl. Microbiol. Biotechnol. 86, 1621–1635.

    Google Scholar 

  95. Ichikawa, Y., Liu, J. L. C., Shen, G. J., and Wong, C. H. (1991) A highly efficient multienzyme system for the one-step synthesis of a sialyl trisaccharide-In situ generation of sialic acid and N-acetyllactosamine coupled with regeneration of UDP-glucose, UDP-galactose, and CMP-sialic acid. J. Am. Chem. Soc. 113, 6300–6302.

    CAS  Google Scholar 

  96. Yu, H., Chokhawala, H. A., Huang, S. S., and Chen, X. (2006) One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat. Protoc. 1, 2485–2492.

    PubMed  CAS  Google Scholar 

  97. Oyelaran, O., and Gildersleeve, J. C. (2009) Glycan arrays: recent advances and future challenges. Curr. Opin. Chem. Biol. 13, 406–413.

    PubMed  CAS  Google Scholar 

  98. Liu, Y., Palma, A. S., and Feizi, T. (2009) Carbohydrate microarrays: key developments in glycobiology. Biol. Chem. 390, 647–656.

    PubMed  CAS  Google Scholar 

  99. Hsu, K. L., and Mahal, L. K. (2009) Sweet tasting chips: microarray-based analysis of glycans. Curr. Opin. Chem. Biol. 13, 427–432.

    PubMed  CAS  Google Scholar 

  100. Yu, H., Chokhawala, H. A., Varki, A., and Chen, X. (2007) Efficient chemoenzymatic synthesis of biotinylated human serum albumin-sialoglycoside conjugates containing O-acetylated sialic acids. Org. Biomol. Chem. 5, 2458–2463.

    PubMed  CAS  Google Scholar 

  101. Chokhawala, H. A., Huang, S. S., Lau, K., Yu, H., Cheng, J. S., Thon, V., Hurtado-Ziola, N., Guerrero, J. A., Varki, A., and Chen, X. (2008) Combinatorial chemoenzymatic synthesis and high-through put screening of sialosides. ACS Chem. Biol. 3, 567–576.

    PubMed  CAS  Google Scholar 

  102. Linman, M. J., Taylor, J. D., Yu, H., Chen, X., and Cheng, Q. (2008) Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides. Anal. Chem. 80, 4007–4013.

    PubMed  CAS  Google Scholar 

  103. Linman, M. J., Yu, H., Chen, X., and Cheng, Q. (2009) Fabrication and characterization of a sialoside-based carbohydrate microarray biointerface for protein binding analysis with surface plasmon resonance imaging. ACS Appl. Mater. Interfaces 1, 1755–1762.

    PubMed  CAS  Google Scholar 

  104. Yu, H., Karpel, R., and Chen, X. (2004) Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg. Med. Chem. 12, 6427–6435.

    PubMed  CAS  Google Scholar 

  105. Li, Y. H., Yu, H., Cao, H. Z., Lau, K., Muthana, S., Tiwari, V. K., Son, B., and Chen, X. (2008) Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl. Microbiol. Biotechnol. 79, 963–970.

    PubMed  CAS  Google Scholar 

  106. Chokhawala, H. A., Yu, H., and Chen, X. (2007) High-throughput substrate specificity studies of sialidases by using chemoenzymatically synthesized sialoside libraries, Chembiochem 8, 194–201.

    PubMed  CAS  Google Scholar 

  107. Cao, H. Z., Li, Y. H., Lau, K., Muthana, S., Yu, H., Cheng, J. S., Chokhawala, H. A., Sugiarto, G., Zhang, L., and Chen, X. (2009) Sialidase substrate specificity studies using chemoenzymatically synthesized sialosides containing C5-modified sialic acids. Org. Biomol. Chem. 7, 5137–5145.

    PubMed  CAS  Google Scholar 

  108. Cao, H. Z., Muthana, S., Li, Y. H., Cheng, J. S., and Chen, X. (2009) Parallel chemoenzymatic synthesis of sialosides containing a C5-diversified sialic acid. Bioorg. Med. Chem. Lett. 19, 5869–5871.

    PubMed  CAS  Google Scholar 

  109. Cheng, J. S., Huang, S. S., Yu, H., Li, Y. H., Lau, K., and Chen, X. Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 20, 260–268.

    Google Scholar 

  110. Sun, M. C., Li, Y. H., Chokhawala, H. A., Henning, R., and Chen, X. (2008) N-Terminal 112 amino acid residues are not required for the sialyltransferase activity of Photobacterium damsela alpha2,6-sialyltransferase. Biotechnol. Lett. 30, 671–676.

    PubMed  CAS  Google Scholar 

  111. Chokhawala, H. A., Cao, H. Z., Yu, H., and Chen, X. (2007) Enzymatic synthesis of fluorinated mechanistic probes for sialidases and sialyltransferases. J. Am. Chem. Soc. 129, 10630–10631.

    PubMed  CAS  Google Scholar 

  112. Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, H. D. (1986) Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261, 5947–5951.

    PubMed  CAS  Google Scholar 

  113. Herrler, G., Rott, R., Klenk, H. D., Muller, H. P., Shukla, A. K., and Schauer, R. (1985) The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. Embo J. 4, 1503–1506.

    PubMed  CAS  Google Scholar 

  114. Schauer R, S. H., Pommerencke J, Iwersen M, Kohla G. (2001) Metaolism and role of O-acetylated sialic acids. In Molecular immunology of complex carbohydrates 2, edited by Wu AM, Plenum, New York, 2001., 325–342.

    Google Scholar 

  115. Gottschalk, A. (1957) Neuraminidase: the specific enzyme of influenza virus and Vibrio cholerae. Biochim. Biophys. Acta 23, 645–646.

    PubMed  CAS  Google Scholar 

  116. Klenk, E., Faillard, H., and Lempfrid, H. (1955) Enzymatic effect of the influenza virus. Hoppe Seylers Z Physiol. Chem. 301, 235–246.

    PubMed  CAS  Google Scholar 

  117. Ogura, H., Furuhata, K., Sato, S., Anazawa, K., Itoh, M., and Shitori, Y. (1987) Studies on sialic acids. 6. Synthesis of 9-O-acetyl-sialic acid and 4-O-acetyl-sialic acid. Carbohydr. Res. 167, 77–86.

    PubMed  CAS  Google Scholar 

  118. Liu, J. L. C., Shen, G. J., Ichikawa, Y., Rutan, J. F., Zapata, G., Vann, W. F., and Wong, C. H. (1992) Overexproduction of CMO-sialic acid synthesis. J. Am. Chem. Soc. 114, 3901–3910.

    CAS  Google Scholar 

  119. Lewis, A. L., Nizet, V., and Varki, A. (2004) Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. Proc. Natl. Acad. Sci. USA 101, 11123–11128.

    PubMed  CAS  Google Scholar 

  120. Varki, A., and Diaz, S. (1984) The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups. Anal. Biochem. 137, 236–247.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial supports from Shandong University (to H.C.), the National Science Foundation of China (No. 20902087 to H.C.), the Natural Science Foundation of Shandong Province (SDNSF, No. ZR2010BM018 to H.C.), the University of California-Davis (to X.C.), the National Institutes of Health (R01GM076360 and U01CA128442 to X.C.), the National Science Foundation (CAREER Award 0548235 to X.C.), Alfred P. Sloan Foundation (to X.C.), and the Camille & Henry Dreyfus Foundation (to X.C.). X.C. is an Alfred P. Sloan Research Fellow, a Camille Dreyfus Teacher-Scholar, and a UC-Davis Chancellor’s Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhi Cao or Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cao, H., Chen, X. (2012). General Consideration on Sialic Acid Chemistry. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics