Skip to main content

Glycoarray by DNA-Directed Immobilization

  • Protocol
  • First Online:
Carbohydrate Microarrays

Abstract

Glycoarrays have become a powerful platform to investigate the interactions of many biological events involving carbohydrates. The carbohydrates immobilization on the surface of the substrates is a key step of glycoarray fabrication. Plenty of strategies have been applied to the immobilization process. Herein a protocol for the synthesis of oligonucleotide glycomimetic conjugates is proposed. The resulting molecules are immobilized by hybridization on a DNA microarray (DNA-directed immobilization; DDI). DDI has been proved to be a very efficient and site-selective. This protocol provides detailed procedures for the preparation of fluorescent oligonucleotide trigalactosylmimetic conjugates and for the preparation of carbohydrate microarrays by DDI on glass slides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 93–130.

    Article  Google Scholar 

  2. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. W., and Marth, J. (1999) Essentials of glycobiology, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  3. Sharon, N., and Lis, H. (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14: 53R-62R.

    Article  PubMed  CAS  Google Scholar 

  4. Werz, D., B., and Seeberger, P., H. (2005) Carbohydrates as the Next Frontier in Pharmaceutical Research. Chemistry 11: 3194–3206.

    Google Scholar 

  5. Pohl, N., L., and Kiessling, L., L. (1999) Scope of multivalent ligand function: lactose-bearing neoglycopolymers by ring-opening metathesis polymerization. Synthesis 1515–1519.

    Google Scholar 

  6. Ratner, D., M., Adams, E., W., Disney, M., D., and Seeberger, P., H. (2004) Tools for Glycomics: Mapping Interactions of Carbohydrates in Biological Systems. ChemBioChem 5: 1375–1383.

    Google Scholar 

  7. Ratner, D., M., Adams, E., W., Su, J., O’Keefe, B., R., Mrksich, M., and Seeberger, P., H. (2004) Probing Protein-Carbohydrate Interactions with Microarrays of Synthetic Oligosaccharides. ChemBioChem 5: 379–383.

    Google Scholar 

  8. Disney, M., D., and Seeberger, P., H. (2004) The Use of Carbohydrate Microarrays to Study Carbohydrate-Cell Interactions and to Detect Pathogens. Chemistry and Biology 11: 1701–1707.

    Google Scholar 

  9. de Paz, J. L., Horlacher, T., and Seeberger, P. H. (2006) Oligosaccharide microarrays to map interactions of carbohydrates in biological systems. Methods in Enzymology 415: 269–292.

    Article  PubMed  Google Scholar 

  10. Uttamchandani, M., Neo, J. L., Zhung Ong, B., N., and Moochhala, S. (2008) Applications of microarrays in pathogen detection and biodefence. Trends in Biotechnology 27: 53–61.

    Google Scholar 

  11. Parthasarathy, N., DeShazer, D., Peacock, S. J., Wuthiekanun, V., England, M. J., Norris, S. L., and Waag, D. M. (2008) Application of Polysaccharide Microarray Technology for the Serodiagnosis of Burkholderia pseudomallei Infection (Melioidosis) in Humans. Journal of Carbohydrate Chemistry 27: 32–40.

    Article  CAS  Google Scholar 

  12. Liang, P.-H., Wu, C.-Y., A, G. W., and Wong, C.-H. (2008) Glycan arrays: biological and medical applications. Current Opinion in Chemical Biology 12: 86–92.

    Google Scholar 

  13. Laurent, N., Voglmeir, J., and Flitsch, S. L. (2008) Glycoarrays—tools for determining protein–carbohydrate interactions and glycoenzyme specificity. Chem. Commun. 4400–4412.

    Google Scholar 

  14. Wang, D., Liu, S. y., Trummer, B. J., Deng, C., and Wang, A. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnology 20: 275–281.

    Google Scholar 

  15. Park, S., Lee, M. R., Pyo, S. J., and Shin, I. (2004) Carbohydrate Chips for Studying High-Throughput Carbohydrate-Protein Inter­actions. Journal of the American Chemical Society 126: 4812–4819.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, D. (2003) Carbohydrate microarrays. Proteomics 3: 2167–2175.

    Article  PubMed  CAS  Google Scholar 

  17. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nature Biotechnology 20: 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  18. Feizi, T., Fazio, F., Chai, W., and Wong, C.-H. (2003) Carbohydrate microarrays – a new set of technologies at the frontiers of glycomics. Current Opinion in Structural Biology 13: 637–645.

    Article  PubMed  CAS  Google Scholar 

  19. Larsen, K., Thygesen, M. B., Guillaumie, F., Willats, W. G. T., and Jensen, K. J. (2006) Solid-phase chemical tools for glycobiology. Carbohydrate Research 341: 1209–1234.

    Article  PubMed  CAS  Google Scholar 

  20. Palma, A., S., Feizi, T., Zhang, Y., Stoll, M., S., Lawson, A., M., Diaz-Rodrıguez, E., Campanero-Rhodes, M., A., Costa, J., Gordon, S., Brown, G., D., and Chai, W. (2006) Ligands for the β-Glucan Receptor, Dectin-1, Assigned Using “Designer” Microarrays of Oligosaccharide Probe (Neoglycolipids) Generated from Glucan Polysaccharides. Journal of Biological Chemistry 281: 5771–5779.

    Google Scholar 

  21. Jaipuri, F., A., Collet, B., Y., M., and Pohl, N., L. (2008) Synthesis and Quantitative Evaluation of Glycero-d-manno-heptose Binding to Concanavalin A by Fluorous-Tag Assistance. Angewandte Chemie, International Edition in English 47: 1707 –1710.

    Google Scholar 

  22. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., Van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, C.-H., and Paulson, C. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proceedings of the National Academy of Sciences of the United States of America 10: 17033–17038.

    Article  Google Scholar 

  23. Park, S., and Shin, I. (2007) Carbohydrate Microarrays for Assaying Galactosyltransferase Activity. Organic Letters 9: 1675–1678.

    Article  PubMed  CAS  Google Scholar 

  24. Seo, J. H., Adachi, K., Lee, B. K., Kang, D. G., Kim, Y. K., Kim, K. R., Lee, H. Y., Kawai, T., and Cha, H. J. (2007) Facile and Rapid Direct Gold Surface Immobilization with Controlled Orientation for Carbohydrates. Bioconjugate Chemistry 18: 2197–2201.

    Article  PubMed  CAS  Google Scholar 

  25. Smith, E. A., Thomas, W. D., Kiessling, L. L., and Corn, R. M. (2003) Surface Plasmon Resonance Imaging Studies of Protein-Carbohydrate Interactions. Journal of the American Chemical Society 125: 6140–6148.

    Article  PubMed  CAS  Google Scholar 

  26. Chevolot, Y., Bucher, O., Léonard, D., Mathieu, H.-J., and Sigrist, H. (1999) Synthesis and Characterization of a Photoactivatable Glycoaryldiazirine for Surface Glycoengineering. Bioconjugate Chemistry 10: 169–175.

    Article  PubMed  CAS  Google Scholar 

  27. Chevolot, Y., Martins, J., Milosevic, N., Leonard, D., Zeng, S., Malissard, M., Berger, E., G., Maier, P., Mathieu, H., J., Crout, D., H., and Sigrist, H. (2001) Immobilisation on Polystyrene of Diazirine Derivatives of MonoandDisaccharides: Biological Activities of Modified Surfaces. Bioorganic and Medicinal Chemistry 9: 2943–2953.

    Google Scholar 

  28. Leonard, D., Chevolot, Y., Bucher, O., Haenni, W., Sigrist, H., and Mathieu, H. J. (1998) ToF-SIMS and XPS study of photoactivatable reagents designed for surface glycoengineering - Part 2. N-[m-(3-(trifluoromethyl)diazirine-3-yl)phenyl]-4-(−3-thio(−1 -D-galactopyrannosyl)-maleimidyl)butyramide (MAD-Gal) on diamond. Surface and Interface Analysis 26: 793–799.

    Article  CAS  Google Scholar 

  29. Léonard, D., Chevolot, Y., Bucher, O., Sigrist, H., and Mathieu, H.-J. (1998) ToF-SIMS and XPS study of photoactivatable reagents designed for surface glycoengineering. Part I. N-(m-(3-(trifluoromethyl)diazirine-3-yl)phenyl)-4-maleimido-butyramide (mad) on silicon, silicon nitride and diamond. Surface and Interface Analysis 26: 783–792.

    Article  Google Scholar 

  30. Léonard, D., Chevolot, Y., Heger, F., Martins, J., Crout, D., H., G., Sigrist, H., and Mathieu, H., J. (2001) ToF-SIMS and XPS Study of Photoactivatable Reagents Designed for Surface Glycoengineering: Part III: 5-carboxamidopentyl N-[m-[3-(trifluoromethyl) diazirin-3-yl] phenyl b-D-galactopyranosyl]-(1->4)-1-thio-b-D-glucopyranoside (Lactose aryl diazirine) on Diamond. Surface and Interface Analysis 31: 457–464.

    Google Scholar 

  31. Manimala, J., C., Li, Z., Jain, A., VedBrat, S., and Gildersleeve, J., C. (2005) Carbohydrate Array Analysis of Anti-Tn Antibodies and Lectins Reveals Unexpected Specificities: Implications for Diagnostic and Vaccine Development. ChemBioChem 6: 2229–2241.

    Article  Google Scholar 

  32. Manimala, J., C., Roach, T., A., Li, Z., and Gildersleeve, J., C. (2006) High-Throughput Carbohydrate Microarray Analysis of 24 Lectins. Angewandte Chemie, International Edition in English 45: 3607–3610.

    Article  Google Scholar 

  33. Manimala, J. C., Roach, T. A., Li, Z., and Gildersleeve, J. C. (2001) High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems. Glycobiology 17: 17C–23C.

    Google Scholar 

  34. Bochner, B., S., Alvarez, R., A., Mehta, P., Bovin, N., V., Blixt, O., White, J., R., and Schnaar, R., L. (2005) Glycan Array Screening Reveals a Candidate Ligand for Siglec-8. Journal of Biological Chemistry 280: 4307–4312.

    Google Scholar 

  35. Zhang, J., Pourceau, G., Meyer, A., Vidal, S., Praly, J. P., Souteyrand, E., Vasseur, J. J., Morvan, F., and Y., C. (2009) DNA-directed immobilisation of glycomimetics for glycoarrays application: Comparison with covalent immobilisation, and development of an on-chip IC(50) measurement assay. Biosensors and Bioelectronics 24: 2515–2521.

    Google Scholar 

  36. Chevolot, Y., Bouillon, C., Vidal, S., Morvan, F., Meyer, A., Cloarec, J.-P., Jochum, A., Praly, J.-P., Vasseur, J.-J., and Souteyrand, E. (2007) DNA-Based Carbohydrate Biochips: A Platform for Surface Glyco-Engineering. Angewandte Chemie, International Edition in English 46: 2398–2402.

    Article  CAS  Google Scholar 

  37. Zhang, J., Pourceau, G., Meyer, A., Vidal, S., Praly, J. P., Souteyrand, E., Vasseur, J. J., Morvan, F., and Chevolot, Y. (2009) Specific recognition of lectins by oligonucleotide glycoconjugates and sorting on a DNA microarray. Chem. Commun. 28: 6795–6797.

    Article  Google Scholar 

  38. Moni, L., Pourceau, G., Zhang, J., Meyer, A., Vidal, S., Souteyrand, E., Dondoni, A., Morvan, F., Chevolot, Y., Vasseur, J. J., and Marra, A. (2009) Design of Triazole-Tethered Glycoclusters Exhibiting Three Different Spatial Arrangements and Comparative Study of their Affinities towards PA-IL and RCA 120 by Using a DNA-Based Glycoarray. ChemBioChem 10: 1369–1378.

    Article  PubMed  CAS  Google Scholar 

  39. Niemeyer, C. M., Boldt, L., Ceyhan, B., and Blohm, D. (1999) DNA-Directed Immobilization: Efficient, Reversible, and Site-Selective Surface Binding of Proteins by Means of Covalent DNA-Streptavidin Conjugates. Analytical Chemistry 268: 54–63.

    CAS  Google Scholar 

  40. Wacker, R., Schröder, H., and Niemeyer, C. M. (2004) Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin–biotin attachment: a comparative study. Analytical Biochemistry 330: 281–287.

    Article  PubMed  CAS  Google Scholar 

  41. Seela, F., and Kaiser, K. (1987) Oligodeoxy­ribonucleotides Containing 1,3-Propanediol as Nucleoside Substitute. Nucleic Acids Research 15: 3113–3129.

    Article  PubMed  CAS  Google Scholar 

  42. Mazurczyk, R., El Khoury, G., Dugasb, V., Hannes, B., Laurenceau, E., Cabrera, M., Krawczyk, S., Souteyrand, E., Cloarec, J. P., and Chevolot, Y. (2008) Low-cost, fast prototyping method of fabrication of the microreactor devices in soda-lime glass. Sensors and Actuators, B: Chemical Sensors and Materials 128: 552–559.

    Article  Google Scholar 

  43. Vieillard, J., Mazurczyk, R., Morin, C., Hannes, B., Chevolot, Y., DesbèneP-L., and Krawczyk, S. (2007) Application of microfluidic chip with integrated optics for electrophoretic separations of proteins. Journal of Chromatography B: Biomedical Applications 845: 218–225.

    Google Scholar 

  44. Morvan, F., Meyer, A., Jochum, A., Sabin, C., Chevolot, Y., Imberty, A., Praly, J.-P., Vasseur, J.-J., Souteyrand, E., and Vidal, S. (2007) Fucosylated Pentaerythrityl Phosphodiester Oligomers (PePOs): Automated Synthesis of DNA-Based Glycoclusters and Binding to Pseudomonas aeruginosa Lectin (PA-IIL). Bioconjugate Chemistry 18: 1637–1643.

    Article  PubMed  CAS  Google Scholar 

  45. Dugas, V., Depret, G., Chevalier, Y., Nesme, X., and Souteyrand, E. (2004) Immobilization of single-stranded DNA fragments to solid surfaces and their repeatable specific hybridization:covalent binding or adsorption. Sensors and Actuators, B: Chemical Sensors and Materials 112–121.

    Google Scholar 

  46. Szurmai, Z., Szabo, L., and Liptak, A. (1989) Diethylene and Triethylene Glycol Spacers for the Preparation of Neoglycoproteins. Acta Chimica Hungarica-Models in Chemistry 126: 259–269.

    CAS  Google Scholar 

  47. Cecioni, S., Lalor, R., Blanchard, B., Praly, J. P., Imberty, A., Matthews, S. E., and Vidal, S. (2009) Achieving High Affinity towards a Bacterial Lectin through Multivalent Topological Isomers of Calix[4]arene Glycoconjugates. Chemistry-a European Journal 15: 13232–13240.

    Article  CAS  Google Scholar 

  48. Salo, H., Virta, P., Hakala, H., Prakash, T. P., Kawasaki, A. M., Manoharan, M., and Lonnberg, H. (1999) Aminooxy functionalized oligonucleotides: Preparation, on-support derivatization, and postsynthetic attachment to polymer support. Bioconjugate Chemistry 10: 815–823.

    Article  PubMed  CAS  Google Scholar 

  49. Dugas, V., and Chevalier, Y. (2003) Surface hydroxylation and silane grafting on fumed and thermal silica. Journal of Colloid and Interface Science 264: 354–361.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the CNRS, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, and Université Montpellier 2, “Interface Physique Chimie Biologie: soutien à la prise de risque,” ANR-08-BLAN-0114-01 and Lyon Biopole, Région Rhône–Alpes programme Cible 2010 and the Chinese Scientific Council for the award of a research studentship and Scholarship. The NanoLyon Platefrom is acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Chevolot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Morvan, F. et al. (2012). Glycoarray by DNA-Directed Immobilization. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics