Skip to main content

Scarless Chromosomal Gene Knockout Methods

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

An improved and rapid genomic engineering method has been developed for the construction of ­custom-designed microorganisms by scarless chromosomal gene knockouts. This method, which can be performed in 2 days, permits restructuring of the Escherichia coli genome via scarless deletion of selected genomic regions. The deletion process is mediated by a special plasmid, pREDI, which carries two independent inducible promoters: (1) an arabinose-inducible promoter that drives expression of λ-RED recombination proteins, which carry out the replacement of a target genomic region with a marker-containing linear DNA cassette, and (2) a rhamnose-inducible promoter that drives expression of I-SceI endonuclease, which accomplishes deletion of the introduced marker by double-strand breakage – mediated intramolecular recombination. This genomic deletion is performed simply by changing the carbon source in the bacterial growth medium from arabinose to rhamnose. The efficiencies of targeted region replacement and deletion of the inserted linear DNA cassette are nearly 70 and 100%, respectively. This rapid and efficient procedure can be adapted for use in generating a variety of genome modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamilton C.M., Aldea M., Washburn B.K., Babitzke P. and Kushner S.R. (1989) New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol, 171, 4617–4622.

    PubMed  CAS  Google Scholar 

  2. Link A.J., Phillips D. and Church G.M. (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol, 179, 6228–6237.

    PubMed  CAS  Google Scholar 

  3. Posfai G., Kolisnychenko V., Bereczki Z. and Blattner F.R. (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res, 27, 4409–4415.

    Article  PubMed  CAS  Google Scholar 

  4. Murphy K.C. (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol, 180, 2063–2071.

    PubMed  CAS  Google Scholar 

  5. Zhang Y., Buchholz F., Muyrers J.P. and Stewart A.F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet, 20, 123–128.

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto M., Ichimura T., Mizoguchi H., Tanaka K., Fujimitsu K., Keyamura K., Ote T., Yamakawa T., Yamazaki Y., Mori H. et al. (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol, 55, 137–149.

    Article  PubMed  CAS  Google Scholar 

  7. Kolisnychenko V., Plunkett G., 3rd, Herring C.D., Feher T., Posfai J., Blattner F.R. and Posfai G. (2002) Engineering a reduced Escherichia coli genome. Genome Res, 12, 640–647.

    Article  PubMed  CAS  Google Scholar 

  8. Posfai G., Plunkett G., 3rd, Feher T., Frisch D., Keil G.M., Umenhoffer K., Kolisnychenko V., Stahl B., Sharma S.S., de Arruda M. et al. (2006) Emergent properties of reduced-genome Escherichia coli. Science, 312, 1044–1046.

    Article  PubMed  CAS  Google Scholar 

  9. Copeland N.G., Jenkins N.A. and Court D.L. (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet, 2, 769–779.

    Article  PubMed  CAS  Google Scholar 

  10. Datsenko K.A. and Wanner B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  11. Lee E.C., Yu D., Martinez de Velasco J., Tessarollo L., Swing D.A., Court D.L., Jenkins N.A. and Copeland N.G. (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 73, 56–65.

    Article  PubMed  CAS  Google Scholar 

  12. Oppenheim A.B., Rattray A.J., Bubunenko M., Thomason L.C. and Court D.L. (2004) In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides. Virology, 319, 185–189.

    Article  PubMed  CAS  Google Scholar 

  13. Court D.L., Sawitzke J.A. and Thomason L.C. (2002) Genetic engineering using homo­lo­gous recombination. Annu Rev Genet, 36, 361–388.

    Article  PubMed  CAS  Google Scholar 

  14. Yu B.J., Sung B.H., Koob M.D., Lee C.H., Lee J.H., Lee W.S., Kim M.S. and Kim S.C. (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol, 20, 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  15. Choulika A., Perrin A., Dujon B. and Nicolas J.F. (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol, 15, 1968–1973.

    PubMed  CAS  Google Scholar 

  16. Rong Y.S., Titen S.W., Xie H.B., Golic M.M., Bastiani M., Bandyopadhyay P., Olivera B.M., Brodsky M., Rubin G.M. and Golic K.G. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev, 16, 1568–1581.

    Google Scholar 

  17. Schmidt-Puchta W., Orel N., Kyryk A. and Puchta H. (2004) Intrachromosomal homologous recombination in Arabidopsis thaliana. Methods Mol Biol, 262, 25–34.

    PubMed  CAS  Google Scholar 

  18. Cox M.M., Layton S.L., Jiang T., Cole K., Hargis B.M., Berghman L.R., Bottje W.G. and Kwon Y.M. (2007) Scarless and site-directed mutagenesis in Salmonella enteritidis chromosome. BMC Biotechnol, 7, 59.

    Article  PubMed  Google Scholar 

  19. Jamsai D., Orford M., Nefedov M., Fucharoen S., Williamson R. and Ioannou P.A. (2003) Targeted modification of a human beta-globin locus BAC clone using GET Recombination and an I-Scei counterselection cassette. Genomics, 82, 68–77.

    Article  PubMed  CAS  Google Scholar 

  20. Kang Y., Durfee T., Glasner J.D., Qiu Y., Frisch D., Winterberg K.M. and Blattner F.R. (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol, 186, 4921–4930.

    Article  PubMed  CAS  Google Scholar 

  21. Sung B.H., Lee C.H., Yu B.J., Lee J.H., Lee J.Y., Kim M.S., Blattner F.R. and Kim S.C. (2006) Development of a biofilm production-deficient Escherichia coli strain as a host for biotechnological applications. Appl Environ Microbiol, 72, 3336–3342.

    Article  PubMed  CAS  Google Scholar 

  22. Tischer B.K., von Einem J., Kaufer B. and Osterrieder N. (2006) Two-step red-­mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 40, 191–197.

    Article  PubMed  CAS  Google Scholar 

  23. Blattner F.R., Plunkett G., 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F. et al. (1997) The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–1462.

    Article  PubMed  CAS  Google Scholar 

  24. Yu B.J., Kang K.H., Lee J.H., Sung B.H., Kim M.S. and Kim S.C. (2008) Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res, 36, e84.

    Article  PubMed  Google Scholar 

  25. Yu D., Ellis H.M., Lee E.C., Jenkins N.A., Copeland N.G. and Court D.L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A, 97, 5978–5983.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from 21C Frontier Program of Microbial Genomics and Applications (MG08-0204-1-0) from the Ministry of Education, Science and Technology and by grants from the Korea Science and Engineering Foundation (2008-0060733) and the Conversing Research Center Program through the National Research Foundation of Korea (2009-0082332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Chang Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sung, B.H., Lee, J.H., Kim, S.C. (2011). Scarless Chromosomal Gene Knockout Methods. In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics