Skip to main content

Accessing and Selecting Genetic Markers from Available Resources

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

The history of genetic markers accurately partitions the progression of molecular genetics into three phases: the RFLP (restriction fragment length polymorphism), microsatellite and SNP (single nucleotide polymorphism) eras. This chapter focuses predominately on the current workhorse, the SNP, though briefly covers the former two and overviews current online databases and portals that act as central repositories as well as hubs to further detailed information. Central gene or disease-based searches are considered and then followed through systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frank, R., Hargreaves, R. (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2, 566–580.

    Article  PubMed  CAS  Google Scholar 

  2. Roberts, R. J. (2005) How restriction enzymes became the workhorses of molecular biology. Proc Natl Acad Sci USA 102, 5905–5908; Danna, K., Nathans, D. (1971) Proc Natl Acad Sci USA 68, 2913–2917; Smith, H. O., Wilcox, K. W. (1970) J Mol Biol 51, 379–391.

    Article  PubMed  CAS  Google Scholar 

  3. Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  4. Ellegren, H. (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5, 435–445.

    Article  PubMed  CAS  Google Scholar 

  5. Waterston, R. H., Lindblad-Toh, K., Birney, E., et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.

    Article  PubMed  CAS  Google Scholar 

  6. Gibbs, R. A., Weinstock, G. M., Metzker, M. L., et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521.

    Article  PubMed  CAS  Google Scholar 

  7. Litt, M., Luty, J. A. (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44, 397–401.

    PubMed  CAS  Google Scholar 

  8. Weissenbach, J., Gyapay, G., Dib, C., et al. (1992) A second-generation linkage map of the human genome. Nature 359, 794–801.

    Article  PubMed  CAS  Google Scholar 

  9. Davies, J. L., Kawaguchi, Y., Bennett, S. T., et al. (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136.

    Article  PubMed  CAS  Google Scholar 

  10. Ogura, Y., Bonen, D. K., Inohara, N., et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606.

    Article  PubMed  CAS  Google Scholar 

  11. Kelkar, Y. D., Tyekucheva, S., Chiaromonte, F., Makova, K. D. (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18, 30–38.

    Article  PubMed  CAS  Google Scholar 

  12. Molla, M., Delcher, A., Sunyaev, S., et al. (2009) Triplet repeat length bias and variation in the human transcriptome. Proc Natl Acad Sci USA 106, 17095–17100.

    Article  PubMed  CAS  Google Scholar 

  13. Day, I. N. (2010) dbSNP in the detail and copy number complexities. Hum Mutat 31, 2–4.

    Article  PubMed  CAS  Google Scholar 

  14. Hawkins, R. D., Hon, G. C., Ren, B. (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11, 476–486.

    PubMed  CAS  Google Scholar 

  15. Duret, L. (2009) Mutation patterns in the human genome: more variable than expected. PLoS Biol 7, e1000028.

    Article  PubMed  Google Scholar 

  16. Walser, J. C., Furano, A. V. (2010) The mutational spectrum of non-CpG DNA varies with CpG content. Genome Res20, 875–882.

    Article  PubMed  CAS  Google Scholar 

  17. Roberts, R. J., Vincze, T., Posfai, J., Macelis, D. (2010) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38, D234–236.

    Article  Google Scholar 

  18. Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.

    Article  PubMed  CAS  Google Scholar 

  19. Sherry, S. T., Ward, M. H., Kholodov, M., et al. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29, 308–311.

    Article  PubMed  CAS  Google Scholar 

  20. Altshuler, D., Brooks, L. D., Chakravarti, A., et al. (2005) A haplotype map of the human genome. Nature 437, 1299–1320.

    Article  Google Scholar 

  21. Zeggini, E., Rayner, W., Morris, A. P., et al. (2005) An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 37, 1320–1322.

    Article  PubMed  CAS  Google Scholar 

  22. The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678.

    Article  Google Scholar 

  23. McCarthy, M. I., Abecasis, G. R., Cardon, L. R., et al. (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9, 356–369.

    Article  PubMed  CAS  Google Scholar 

  24. Hindorff, L. A., Sethupathy, P., Junkins, H. A., et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106, 9362–9367.

    Article  PubMed  CAS  Google Scholar 

  25. Barrett, J. C., Fry, B., Maller, J., Daly, M. J. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265.

    Article  PubMed  CAS  Google Scholar 

  26. de Bakker, P. I., Yelensky, R., Pe’er, I., et al. (2005) Efficiency and power in genetic association studies. Nat Genet 37, 1217–1223.

    Article  PubMed  Google Scholar 

  27. Voight, B. F., Kudaravalli, S., Wen, X., Pritchard, J. K. (2006) A map of recent positive selection in the human genome. PLoS Biol 4, e72.

    Article  PubMed  Google Scholar 

  28. Pickrell, J. K., Coop, G., Novembre, J., et al. (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19, 826–837.

    Article  PubMed  CAS  Google Scholar 

  29. Coop, G., Pickrell, J. K., Novembre, J., et al. (2009) The role of geography in human adaptation. PLoS Genet 5, e1000500.

    Article  PubMed  Google Scholar 

  30. Via, M., Gignoux, C., Burchard, E. G. (2010) The 1000 Genomes Project: new opportunities for research and social challenges. Genome Med 2, 3.

    Article  PubMed  Google Scholar 

  31. Redon, R., Ishikawa, S., Fitch, K. R., et al. (2006) Global variation in copy number in the human genome. Nature 444, 444–454.

    Article  PubMed  CAS  Google Scholar 

  32. Conrad, D. F., Pinto, D., Redon, R., et al. (2010) Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712.

    Article  PubMed  CAS  Google Scholar 

  33. Iafrate, A. J., Feuk, L., Rivera, M. N., et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36, 949–951.

    Article  PubMed  CAS  Google Scholar 

  34. The International Cancer Genome Consortium (2010) International network of cancer genome projects. Nature 464, 993–998.

    Article  Google Scholar 

  35. Golub, T. (2010) Counterpoint: Data first. Nature 464, 679.

    Article  PubMed  CAS  Google Scholar 

  36. Stratton, M. R., Campbell, P. J., Futreal, P. A. (2009) The cancer genome. Nature 458, 719–724.

    Article  PubMed  CAS  Google Scholar 

  37. Spencer, C. C., Deloukas, P., Hunt, S., et al. (2006) The influence of recombination on human genetic diversity. PLoS Genet 2, e148.

    Article  PubMed  Google Scholar 

  38. Musumeci, L., Arthur, J. W., Cheung, F. S., et al. (2010) Single nucleotide differences (SNDs) in the dbSNP database may lead to errors in genotyping and haplotyping studies. Hum Mutat 31, 67–73.

    Article  PubMed  CAS  Google Scholar 

  39. Gabriel, S. B., Schaffner, S. F., Nguyen, H., et al. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–2229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bell, C.G. (2011). Accessing and Selecting Genetic Markers from Available Resources. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics