Skip to main content

Synthesis of a Glycomimetic Oligonucleotide Conjugate by 1,3-Dipolar Cycloaddition

  • Protocol
  • First Online:
Bioconjugation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 751))

Abstract

A glycomimetic oligonucleotide conjugate bearing four galactose residues on a mannose core is ­synthesized using oligonucleotide solid-phase synthesis and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, or “click” chemistry). To achieve this purpose, new building blocks (including the solid support and phosphoramidites) are synthesized and used on a DNA synthesizer to generate a tetraalkyne oligonucleotide, which is then conjugated with a galactose azide derivative by click chemistry to afford the desired 3′-tetragalactosyl-mannose oligonucleotide conjugate. The procedures described in this chapter provide a general approach for the synthesis of novel glycoconjugates that can be immobilized to a DNA chip via DNA-directed immobilization to study, for example, their multivalent interactions with lectins in cellular targeting/uptake, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki, A. (1993) Biological Roles of Oligosaccharides – All of the Theories Are Correct. Glycobiology 3, 97–130.

    Article  PubMed  CAS  Google Scholar 

  2. Dwek, R. A. (1996) Glycobiology: Toward understanding the function of sugars. Chem. Rev. 96, 683–720.

    Article  PubMed  CAS  Google Scholar 

  3. Lis, H., and Sharon, N. (1998) Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem. Rev. 98, 637–674.

    Article  PubMed  CAS  Google Scholar 

  4. Imberty, A., Wimmerova, M., Mitchell, E. P., and Gilboa-Garber, N. (2004) Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition. Microbes Infect. 6, 221–228.

    Article  PubMed  CAS  Google Scholar 

  5. Chemani, C., Imberty, A., de Bentzmann, S., Pierre, M., Wimmerova, M., Guery, B. P., and Faure, K. (2009) Role of LecA and LecB Lectins in Pseudomonas aeruginosa-Induced Lung Injury and Effect of Carbohydrate Ligands. Infect. Immun. 77, 2065–2075.

    Article  PubMed  CAS  Google Scholar 

  6. Deguise, I., Lagnoux, D., and Roy, R. (2007) Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa. New J. Chem. 31, 1321–1331.

    Article  CAS  Google Scholar 

  7. Lundquist, J. J., and Toone, E. J. (2002) The cluster glycoside effect. Chem. Rev. 102, 555–578.

    Article  PubMed  CAS  Google Scholar 

  8. Darbre, T., and Reymond, J. L. (2008) Glycopeptide dendrimers for biomedical applications. Curr. Top. Med. Chem. 8, 1286–1293.

    Article  PubMed  CAS  Google Scholar 

  9. Singh, Y., Renaudet, O., Defrancq, E., and Dumy, P. (2005) Preparation of a multitopic glycopeptide-oligonucleotide conjugate. Org. Lett. 7, 1359–1362.

    Article  PubMed  CAS  Google Scholar 

  10. Marra, A., Moni, L., Pazzi, D., Corallini, A., Bridi, D., and Dondoni, A. (2008) Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org. Biomol. Chem. 6, 1396–1409.

    Article  PubMed  CAS  Google Scholar 

  11. Cecioni, S., Lalor, R., Blanchard, B., Praly, J. P., Imberty, A., Matthews, S. E., and Vidal, S. (2009) Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. Chem. Eur. J. 15, 13232–13240.

    Article  PubMed  CAS  Google Scholar 

  12. Dubber, M., and Lindhorst, T. K. (2001) Trehalose-based octopus glycosides for the synthesis of carbohydrate-centered PAMAM dedrimers and thiourea-bridged glycoclusters. Org. Lett. 3, 4019–4022.

    Article  PubMed  CAS  Google Scholar 

  13. Ortega-Munoz, M., Perez-Balderas, F., Morales-Sanfrutos, J., Hernandez-Mateo, F., Isac-Garcia, J., and Santoyo-Gonzalez, F. (2009) Click Multivalent Heterogeneous Neoglycoconjugates – Modular Synthesis and Evaluation of Their Binding Affinities. Eur. J. Org. Chem., 2454–2473.

    Google Scholar 

  14. Garcia-Lopez, J. J., Hernandez-Mateo, F., Isac-Garcia, J., Kim, J. M., Roy, R., Santoyo-Gonzalez, F., and Vargas-Berenguel, A. (1999) Synthesis of per-glycosylated beta-cyclodextrins having enhanced lectin binding affinity. J. Org. Chem. 64, 522–531.

    Article  CAS  Google Scholar 

  15. Matsuura, K., Hibino, M., Yamada, Y., and Kobayashi, K. (2001) Construction of Glyco-Clusters by Self-Organization of Site-Specifically Glycosylated Oligonucleotides and Their Cooperative Amplification of Lectin-Recognition. J. Am. Chem. Soc. 123, 357–358.

    Article  PubMed  CAS  Google Scholar 

  16. Zatsepin, T. S., and Oretskaya, T. S. (2004) Synthesis and applications of oligonucleotide-carbohydrate conjugates. Chem. Biodiversity 1, 1401–1417.

    Article  CAS  Google Scholar 

  17. Biessen, E. A. L., Vietsch, H., Rump, E. T., Fluiter, K., Kuiper, J., Bijsterbosch, M. K., and Van Berkel, T. J. C. (1999) Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo. Biochem. J. 340, 783–792.

    Article  PubMed  CAS  Google Scholar 

  18. Katajisto, J., Heinonen, P., and Lonnberg, H. (2004) Solid-phase synthesis of oligonucleotide glycoconjugates bearing three different glycosyl groups: Orthogonally protected bis(hydroxymethyl)-N,N′-bis(3-hydroxypropyl)malondiamide phosphoramidite as key building block. J. Org. Chem. 69, 7609–7615.

    Article  PubMed  CAS  Google Scholar 

  19. Katajisto, J., Virta, P., and Lonnberg, H. (2004) Solid-phase synthesis of multiantennary oligonucleotide glycoconjugates utilizing on-support oximation. Bioconjugate Chem. 15, 890–896.

    Article  CAS  Google Scholar 

  20. Bouillon, C., Meyer, A., Vidal, S., Jochum, A., Chevolot, Y., Cloarec, J. P., Praly, J. P., Vasseur, J. J., and Morvan, F. (2006) Microwave assisted “click” chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. J. Org. Chem. 71, 4700–4702.

    Article  PubMed  CAS  Google Scholar 

  21. Beaucage, S. L., and Caruthers, M. H. (1981) Deoxynucleoside phosphoramidites – a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862.

    Article  CAS  Google Scholar 

  22. Tornoe, C. W., Christensen, C., and Meldal, M. (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064.

    Article  PubMed  CAS  Google Scholar 

  23. Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. (2002) A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 41, 2596–2599.

    Article  CAS  Google Scholar 

  24. Wacker, R., and Niemeyer, C. M. (2004) DDI-mu FIA – A readily configurable microarray-fluorescence immunoassay based on DNA-directed immobilization of proteins. Chembiochem 5, 453–459.

    Article  PubMed  CAS  Google Scholar 

  25. Chevolot, Y., Bouillon, C., Vidal, S., Morvan, F., Meyer, A., Cloarec, J. P., Jochum, A., Praly, J. P., Vasseur, J. J., and Souteyrand, E. (2007) DNA-based carbohydrate biochips: A platform for surface glyco-engineering. Angew. Chem. Int. Ed. 46, 2398–2402.

    Article  CAS  Google Scholar 

  26. Pourceau, G., Meyer, A., Vasseur, J. J., and Morvan, F. (2009) Azide Solid Support for 3′-Conjugation of Oligonucleotides and Their Circularization by Click Chemistry. J. Org. Chem. 74, 6837–6842.

    Article  PubMed  CAS  Google Scholar 

  27. Hasegawa, T., Numata, M., Okumura, S., Kimura, T., Sakurai, K., and Shinkai, S. (2007) Carbohydrate-appended curdlans as a new family of glycoclusters with binding properties both for a polynucleotide and lectins. Org. Biomol. Chem. 5, 2404–2412.

    Article  PubMed  CAS  Google Scholar 

  28. Pourceau, G., Meyer, A., Vasseur, J. J., and Morvan, F. (2009) Synthesis of Mannose and Galactose Oligonucleotide Conjugates by Bi-click chemistry. J. Org. Chem. 74, 1218–1222.

    Article  PubMed  CAS  Google Scholar 

  29. Pourceau, G., Meyer, A., Vasseur, J. J., and Morvan, F. (2008) Combinatorial and automated synthesis of phosphodiester galactosyl cluster on solid support by click chemistry assisted by microwaves. J. Org. Chem. 73, 6014–6017.

    Article  PubMed  CAS  Google Scholar 

  30. Lonnberg, H. (2009) Solid-Phase Synthesis of Oligonucleotide Conjugates Useful for Delivery and Targeting of Potential Nucleic Acid Therapeutics. Bioconjugate Chem. 20, 1065–1094.

    Article  CAS  Google Scholar 

  31. Pon, R. T., and Yu, S. Y. (1997) Hydroquinone-O,O′-diacetic acid (Q-linker) as a replacement for succinyl and oxalyl linker arms in solid phase oligonucleotide synthesis. Nucleic Acids Res. 25, 3629–3635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Morvan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pourceau, G., Meyer, A., Vasseur, JJ., Morvan, F. (2011). Synthesis of a Glycomimetic Oligonucleotide Conjugate by 1,3-Dipolar Cycloaddition. In: Mark, S. (eds) Bioconjugation Protocols. Methods in Molecular Biology, vol 751. Humana Press. https://doi.org/10.1007/978-1-61779-151-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-151-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-150-5

  • Online ISBN: 978-1-61779-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics