Skip to main content

Production and Use of Stable Isotope-Labeled Proteins for Absolute Quantitative Proteomics

  • Protocol
  • First Online:
Gel-Free Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 753))

Abstract

In the field of analytical chemistry, stable isotope dilution assays are extensively used in combination with liquid chromatography-mass spectrometry (LC-MS) to provide confident quantification results. Over the last decade, the principle of isotope dilution has been adopted by the proteomic community in order to accurately quantify proteins in biological samples. In these experiments, a protein’s concentration is deduced from the ratio between the MS signal of a tryptic peptide and that of a stable isotope-labeled analog, which serves as an internal standard. The first isotope dilution standards introduced in proteomics were chemically synthesized peptides incorporating a stable isotope-tagged amino acid. These isotopically labeled peptide standards, which are currently widely used, are generally added to samples after protein isolation and digestion. Thus, if protein enrichment is necessary, they do not allow correction for protein losses that may occur during sample pre-fractionation, nor do they allow the tryptic digestion yield to be taken into account. To reduce these limitations we have developed the PSAQ (Protein Standard Absolute Quantification) strategy using full-length stable isotope-labeled proteins as quantification standards. These standards and the target proteins share identical biochemical properties. This allows standards to be spiked into samples at an early stage of the analytical process. Thanks to this possibility, the PSAQ method provides highly accurate quantification results, including for samples requiring extensive biochemical pre-fractionation. In this chapter, we describe the production of full-length stable isotope-labeled proteins (PSAQ standards) using cell-free expression devices. The purification and quality control of protein standards, crucial for good-quality and accurate measurements, are also detailed. Finally, application of the PSAQ method to a typical protein quantification assay is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brun, V., Masselon, C., Garin, J. and Dupuis, A. (2009) Isotope dilution strategies for absolute quantitative proteomics. J Proteomics. 72, 740–749.

    Article  PubMed  CAS  Google Scholar 

  2. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. and Kuster, B. (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 389, 1017–1031.

    Article  PubMed  CAS  Google Scholar 

  3. Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol. 1, 252–262.

    Article  PubMed  CAS  Google Scholar 

  4. Wilm, M. (2009) Quantitative proteomics in biological research. Proteomics. 9, 4590–4605.

    Article  PubMed  CAS  Google Scholar 

  5. Huttenhain, R., Malmstrom, J., Picotti, P. and Aebersold, R. (2009) Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol. 13, 518–525.

    Article  PubMed  Google Scholar 

  6. Rifai, N., Gillette, M. A. and Carr, S. A. (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 24, 971–983.

    Article  PubMed  CAS  Google Scholar 

  7. Ye, X., Blonder, J. and Veenstra, T. D. (2009) Targeted proteomics for validation of biomarkers in clinical samples. Brief Funct Genomic Proteomic. 8, 126–135.

    Article  PubMed  CAS  Google Scholar 

  8. Malmstrom, J., Lee, H. and Aebersold, R. (2007) Advances in proteomic workflows for systems biology. Curr Opin Biotechnol. 18, 378–384.

    Article  PubMed  Google Scholar 

  9. Gstaiger, M. and Aebersold, R. (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 10, 617–627.

    Article  PubMed  CAS  Google Scholar 

  10. Rappel, C. and Schaumloffel, D. (2008) The role of sulfur and sulfur isotope dilution analysis in quantitative protein analysis. Anal Bioanal Chem. 390, 605–615.

    Article  PubMed  CAS  Google Scholar 

  11. Bettmer, J., Montes Bayon, M., Encinar, J. R., Fernandez Sanchez, M. L., Fernandez de la Campa Mdel, R. and Sanz Medel, A. (2009) The emerging role of ICP-MS in proteomic analysis. J Proteomics. 72, 989–1005.

    Google Scholar 

  12. Wolters, D. A., Washburn, M. P. and Yates, J. R., 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 73, 5683–5690.

    Article  PubMed  CAS  Google Scholar 

  13. Hanke, S., Besir, H., Oesterhelt, D. and Mann, M. (2008) Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res. 7, 1118–1130.

    Article  PubMed  CAS  Google Scholar 

  14. Lange, V., Picotti, P., Domon, B. and Aebersold, R. (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 4, 222.

    Article  PubMed  Google Scholar 

  15. Stahl-Zeng, J., Lange, V., Ossola, R., Eckhardt, K., Krek, W., Aebersold, R., et al. (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics. 6, 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  16. Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B. and Aebersold, R. (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell. 138, 795–806.

    Article  PubMed  CAS  Google Scholar 

  17. Hortin, G. L. and Sviridov, D. (2010) The dynamic range problem in the analysis of the plasma proteome. J Proteomics. 73, 629–636.

    Google Scholar 

  18. Ackermann, B. L. and Berna, M. J. (2007) Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers. Expert Rev Proteomics. 4, 175–186.

    Article  PubMed  CAS  Google Scholar 

  19. Anderson, N. L., Anderson, N. G., Haines, L. R., Hardie, D. B., Olafson, R. W. and Pearson, T. W. (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res. 3, 235–244.

    Article  PubMed  CAS  Google Scholar 

  20. Roche, S., Tiers, L., Provansal, M., Seveno, M., Piva, M. T., Jouin, P., et al. (2009) Depletion of one, six, twelve or twenty major blood proteins before proteomic analysis: the more the better? J Proteomics. 72, 945–951.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, T., Qian, W. J., Mottaz, H. M., Gritsenko, M. A., Norbeck, A. D., Moore, R. J., et al. (2006) Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol Cell Proteomics. 5, 2167–2174.

    Article  PubMed  CAS  Google Scholar 

  22. Domon, B. (2009) Glycosylation as means of reducing sample complexity to enable quantitative proteomics. Proteomics. 9, 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  23. Van Damme, P., Van Damme, J., Demol, H., Staes, A., Vandekerckhove, J. and Gevaert, K. (2009) A review of COFRADIC techniques targeting protein N-terminal acetylation. BMC Proc. 3(Suppl 6), S6.

    Google Scholar 

  24. Lange, V., Malmstrom, J. A., Didion, J., King, N. L., Johansson, B. P., Schafer, J., et al. (2008) Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring. Mol Cell Proteomics. 7, 1489–1500.

    Article  PubMed  CAS  Google Scholar 

  25. Malmstrom, J., Beck, M., Schmidt, A., Lange, V., Deutsch, E. W. and Aebersold, R. (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature. 460, 762–765.

    Article  PubMed  Google Scholar 

  26. Becher, F., Pruvost, A., Clement, G., Tabet, J. C. and Ezan, E. (2006) Quantification of small therapeutic proteins in plasma by liquid chromatography-tandem mass spectrometry: application to an elastase inhibitor EPI-hNE4. Anal Chem. 78, 2306–2313.

    Article  PubMed  CAS  Google Scholar 

  27. Ji, C., Sadagopan, N., Zhang, Y. and Lepsy, C. (2009) A Universal strategy for development of a method for absolute quantification of therapeutic monoclonal antibodies in biological matrices using differential dimethyl labeling coupled with ultra performance liquid chromatography-tandem mass spectrometry. Anal Chem. 81, 9321–9328.

    Article  PubMed  CAS  Google Scholar 

  28. Dubois, M., Fenaille, F., Clement, G., Lechmann, M., Tabet, J. C., Ezan, E., et al. (2008) Immunopurification and mass spectrometric quantification of the active form of a chimeric therapeutic antibody in human serum. Anal Chem. 80, 1737–1745.

    Article  PubMed  CAS  Google Scholar 

  29. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA. 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  30. Brun, V., Dupuis, A., Adrait, A., Marcellin, M., Thomas, D., Court, M., et al. (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics. 6, 2139–2149.

    Article  PubMed  CAS  Google Scholar 

  31. Arsene, C. G., Ohlendorf, R., Burkitt, W., Pritchard, C., Henrion, A., O’Connor, G., et al. (2008) Protein quantification by isotope dilution mass spectrometry of proteolytic fragments: cleavage rate and accuracy. Anal Chem. 80, 4154–4160.

    Article  PubMed  CAS  Google Scholar 

  32. Beynon, R. J., Doherty, M. K., Pratt, J. M. and Gaskell, S. J. (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods. 2, 587–589.

    Article  PubMed  CAS  Google Scholar 

  33. Janecki, D. J., Bemis, K. G., Tegeler, T. J., Sanghani, P. C., Zhai, L., Hurley, T. D., et al. (2007) A multiple reaction monitoring method for absolute quantification of the human liver alcohol dehydrogenase ADH1C1 isoenzyme. Anal Biochem. 369, 18–26.

    Article  PubMed  CAS  Google Scholar 

  34. Izrael-Tomasevic, A., Phu, L., Phung, Q. T., Lill, J. R. and Arnott, D. (2009) Targeting interferon alpha subtypes in serum: a comparison of analytical approaches to the detection and quantitation of proteins in complex biological matrices. J Proteome Res. 8, 3132–3140.

    Article  PubMed  CAS  Google Scholar 

  35. Ciccimaro, E., Hanks, S. K., Yu, K. H. and Blair, I. A. (2009) Absolute quantification of phosphorylation on the kinase activation loop of cellular focal adhesion kinase by stable isotope dilution liquid chromatography/mass spectrometry. Anal Chem. 81, 3304–3313.

    Article  PubMed  CAS  Google Scholar 

  36. Heudi, O., Barteau, S., Zimmer, D., Schmidt, J., Bill, K., Lehmann, N., et al. (2008) Towards absolute quantification of therapeutic monoclonal antibody in serum by LC-MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal Chem. 80, 4200–4207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lebert, D., Dupuis, A., Garin, J., Bruley, C., Brun, V. (2011). Production and Use of Stable Isotope-Labeled Proteins for Absolute Quantitative Proteomics. In: Gevaert, K., Vandekerckhove, J. (eds) Gel-Free Proteomics. Methods in Molecular Biology, vol 753. Humana Press. https://doi.org/10.1007/978-1-61779-148-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-148-2_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-147-5

  • Online ISBN: 978-1-61779-148-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics