Skip to main content

Protease Specificity Profiling by Tandem Mass Spectrometry Using Proteome-Derived Peptide Libraries

  • Protocol
  • First Online:
Gel-Free Proteomics

Abstract

Protease specificity profiling using proteome-derived, database-searchable peptide libraries is a novel approach to define the active site specificity of proteolytic enzymes we call PICS (Proteomic Identification of protease Cleavage Sites). Proteome-derived peptide libraries are generated by trypsin, GluC, or chymotrypsin digestion of biologically relevant proteomes, such as cytosolic lysates, to generate three separate libraries that each differ from the others in their C-terminal amino acid residues according to the protease specificity. Primary amines of all peptides are then chemically protected so that after incubation with a test protease, the neo-N-termini of the prime-side cleavage products with exposed α-amines can be specifically biotinylated, enriched, and identified by liquid chromatography-tandem mass spectrometry. The corresponding nonprime-side sequences are derived bioinformatically. Suited for all protease classes except carboxyproteases and those aminoproteases and dipeptidases requiring a free α-amine for cleavage, PICS simultaneously profiles the specificity of prime and nonprime positions and directly determines scissile peptide bonds of up to hundreds of cleavage site sequences in a single experiment. This wealth of sequence specificity information also allows for the investigation of subsite cooperativity. Herein we describe a simplified procedure to produce PICS peptide libraries, the methods to perform a PICS assay, and a new method of data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schilling, O., and Overall, C. M. (2007) Proteomic discovery of protease substrates, Curr. Opin. Chem. Biol. 11, 36–45.

    Article  PubMed  CAS  Google Scholar 

  2. Schilling, O., and Overall, C. M. (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites, Nat. Biotechnol. 26, 685–694.

    Article  PubMed  CAS  Google Scholar 

  3. Ridky, T. W., Cameron, C. E., Cameron, J., Leis, J., Copeland, T., Wlodawer, A., Weber, I. T., and Harrison, R. W. (1996) Human immunodeficiency virus, type 1 protease substrate specificity is limited by interactions between substrate amino acids bound in adjacent enzyme subsites, J. Biol. Chem. 271, 4709–4717.

    Article  PubMed  CAS  Google Scholar 

  4. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  5. Craig, R., and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra, Bioinformatics 20, 1466–1467.

    Article  PubMed  CAS  Google Scholar 

  6. Pedrioli, P. G. A., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R. H., Apweiler, R., Cheung, K., Costello, C. E., Hermjakob, H., Huang, S., Julian, R. K., Kapp, E., McComb, M. E., Oliver, S. G., Omenn, G., Paton, N. W., Simpson, R., Smith, R., Taylor, C. F., Zhu, W., and Aebersold, R. (2004) A common open representation of mass spectrometry data and its application to proteomics research, Nat. Biotechnol. 22, 1459–1466.

    Article  PubMed  CAS  Google Scholar 

  7. Pedrioli, P. G. A. (2010) Trans-proteomic pipeline: a pipeline for proteomic analysis, Methods Mol. Biol. 604, 213–238.

    Article  PubMed  CAS  Google Scholar 

  8. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal. Chem. 74, 5383–5392.

    Article  PubMed  CAS  Google Scholar 

  9. Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and Apweiler, R. (2004) The international protein index: an integrated database for proteomics experiments, Proteomics 4, 1985–1988.

    Article  PubMed  CAS  Google Scholar 

  10. Gorodkin, J., Heyer, L. J., Brunak, S., and Stormo, G. D. (1997) Displaying the information contents of structural RNA alignments: the structure logos, Comput. Appl. Biosci. 13, 583–586.

    PubMed  CAS  Google Scholar 

  11. Schneider, T. D., and Stephens, R. M. (1990) Sequence logos: a new way to display consensus sequences, Nucleic Acids Res. 18, 6097–6100.

    Article  PubMed  CAS  Google Scholar 

  12. Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J., and Gevaert, K. (2009) Improved visualization of protein consensus sequences by iceLogo, Nat. Methods 6, 786–787.

    Article  PubMed  CAS  Google Scholar 

  13. MacLean, B., Eng, J. K., Beavis, R. C., and McIntosh, M. (2006) General framework for developing and evaluating database scoring algorithms using the TANDEM search engine, Bioinformatics 22, 2830–2832.

    Article  PubMed  CAS  Google Scholar 

  14. Schilling, O., Huesgen, P. F., Barré, O., Auf dem Keller, U., and Overall, C. M. (2011) Characterization of the prime and non-prime active site specificities of proteases by proteomederived peptide libraries and tandem mass spectrometry. Nat. Protoc. 6, 111–120.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Bettina Mayer for technical assistance in establishing the simplified purification protocol. O.S. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) (grants SCHI 871/1-1 and 871/2-1) and the Michael Smith Foundation for Health Research (MSFHR). U.a.d.K. was supported by a DFG research fellowship. C.M.O. is supported by a Canada Research Chair in Metalloproteinase Proteomics and Systems Biology. This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) and from a program project grant in Breast Cancer Metastases from the Canadian Breast Cancer Research Alliance (CBCRA) with funds from the Canadian Breast Cancer Foundation and the Cancer Research Society as well as with an Infrastructure Grant from MSHFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Overall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schilling, O., auf dem Keller, U., Overall, C.M. (2011). Protease Specificity Profiling by Tandem Mass Spectrometry Using Proteome-Derived Peptide Libraries. In: Gevaert, K., Vandekerckhove, J. (eds) Gel-Free Proteomics. Methods in Molecular Biology, vol 753. Humana Press. https://doi.org/10.1007/978-1-61779-148-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-148-2_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-147-5

  • Online ISBN: 978-1-61779-148-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics