Skip to main content

Assessing Toxic Injuries of Experimental Therapeutics to the Crystalline Lens Using Lens Explant Culture

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 56))

  • 2753 Accesses

Abstract

Cataract formation during preclinical drug safety assessment studies can be a devastating safety finding during drug development based on the stage at which these findings usually occur. The lens explant culture models offer an extremely versatile and simple in vitro model to screen compound for such toxic liabilities or to study possible mechanisms of toxicity. The following chapter is designed to highlight numerous examples of cataract formation during the drug development process, techniques used to prepare the model and some approaches used to understand drug-induced cataract formation in vitro from a mechanistic, screening and species sensitivity perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li J, Tripathi RC, Tripathi BJ (2008) Drug-induced ocular disorders. Drug Saf 31:127–141

    Article  PubMed  Google Scholar 

  2. Somps CJ, Greene N, Render JA, Aleo MD, Fortner JH, Dykens JA, Phillips G (2009) A current practice for predicting ocular toxicity of systemically delivered drugs. Cutan Ocul Toxicol 28:1–18

    Article  PubMed  CAS  Google Scholar 

  3. ZOCOR, NDA no. 019766, product label approved 6/11/2008. United States Food and Drug Administration. Accessed 12 Jan 2010. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019766s076lbl.pdf

  4. Greaves P, Goonetilleke R, Nunn G, Topham J, Orton T (1993) Two-year carcinogenicity study of tamoxifen in Alderley Park Wistar-derived rats. Cancer Res 53:3919–3924

    PubMed  CAS  Google Scholar 

  5. MEVACOR, NDA no. 019643, product label approved 3/9/2009. United States Food and Drug Administration, Accessed 12 Jan 2010. http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019643s080lbl.pdf

  6. von Keutz E, Schluter G (1998) Preclinical safety evaluation of cerivastatin, a novel HMG-CoA reductase inhibitor. Am J Cardiol 82:11J–17J

    Article  Google Scholar 

  7. Shibuta T, Kato Y, Amano Y, Kakishita T, Tanaka M, Takimoto M (1998) A 12-month oral toxicity study of (+)-monocalcium bis[(3R, 5S, 6E)-7-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolyl]-3,5-dihydroxy-6-heptenoate] (NK-104) in dogs followed by a 2-month recovery test. Oyo Yakuri Pharmacometrics 56:101–130

    CAS  Google Scholar 

  8. LESCOL, NDA no. 020261, product label approved 6/12/2007. United States Food and Drug Administration. Accessed 12 Jan 2010. http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/020261s039,021192s013lbl.pdf

  9. SEROQUEL, NDA no. 020639, product label approved 12/2/2009. United States Food and Drug Administration, Accessed 12 Jan 2010. http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020639s045s046lbl.pdf

  10. Ishida H, Mitamura T, Takahashi Y, Hisatomi A, Fukuhara Y, Murato K, Ohara K (1997) Cataract development induced by repeated oral dosing with FK506 (tacrolimus) in adult rats. Toxicology 123:167–175

    Article  PubMed  CAS  Google Scholar 

  11. Lerman SA, Delongeas JL, Plard JP, Veneziale RW, Clark RL, Rubin L, Sanders JE (1995) Cataractogenesis in rats induced by in utero exposure to RG 12915, a 5-HT3 antagonist. Fundam Appl Toxicol 27:270–276

    Article  PubMed  CAS  Google Scholar 

  12. Langle UW, Wolf A, Kammuller ME (1993) Cataractogenic effects in rats following chronic administration of SDZ ICT 322, a selective 5-HT3 antagonist. Fundam Appl Toxicol 21:393–401

    Article  PubMed  CAS  Google Scholar 

  13. Langle UW, Wolf A, Cordier A (1997) Enhancement of SDZ ICT 322-induced cataracts and skin changes in rats following vitamin E- and selenium-deficient diet. Arch Toxicol 71:283–289

    Article  PubMed  CAS  Google Scholar 

  14. Aleo MD, Doshna CM, Navetta KA (2005) Ciglitazone-induced lenticular opacities in rats: in vivo and whole lens explant culture evaluation. J Pharmacol Exp Ther 312:1027–1033

    Article  PubMed  CAS  Google Scholar 

  15. Mano T, Okumura Y, Sakakibara M, Okumura T, Tamura T, Miyamoto K, Stevens RW (2004) 4-[5-Fluoro-3-[4-(2-methyl-1H-imidazol-1-yl)benzyloxy]phenyl]-3,4,5,6- tetrahydro-2H-pyran-4-carboxamide, an orally active inhibitor of 5-lipoxygenase with improved pharmacokinetic and toxicology characteristics. J Med Chem 47:720–725

    Article  PubMed  CAS  Google Scholar 

  16. Aleo MD, Avery MJ, Beierschmitt WP, Drupa CA, Fortner JH, Kaplan AH, Navetta KA, Shepard RM, Walsh CM (2000) The use of explant lens culture to assess cataractogenic potential. Ann NY Acad Sci 919:171–187

    Article  PubMed  CAS  Google Scholar 

  17. Pyrah IT, Kalinowski A, Jackson D, Davies W, Davis S, Aldridge A, Greaves P (2001) Toxicologic lesions associated with two related inhibitors of oxidosqualene cyclase in the dog and mouse. Toxicol Pathol 29:174–179

    Article  PubMed  CAS  Google Scholar 

  18. Bencz Z, Ivan E, Cholnoky E (1985) Analysis of cataract and keratotic damage induced by 4-diethylaminoethoxy-alpha-ethyl-benzhydrol (RGH-6201) in rats. Arch Toxicol Suppl 8:476–479

    PubMed  CAS  Google Scholar 

  19. Spector A (2000) Review: oxidative stress and disease. J Ocul Pharmacol Ther 16:193–201

    Article  PubMed  CAS  Google Scholar 

  20. Chung SS, Ho EC, Lam KS, Chung SK (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14:S233–S236

    Article  PubMed  CAS  Google Scholar 

  21. Azuma M, Tamada Y, Kanaami S, Nakajima E, Nakamura Y, Fukiage C, Forsberg NE, Duncan MK, Shearer TR (2003) Differential influence of proteolysis by calpain 2 and Lp82 on in vitro precipitation of mouse lens crystallins. Biochem Biophys Res Commun 307:558–563

    Article  PubMed  CAS  Google Scholar 

  22. Walsh Clang CM, Aleo MD (1997) Mechanistic analysis of S-(1,2-dichlorovinyl)-L-cysteine-induced cataractogenesis in vitro. Toxicol Appl Pharmacol 146:144–155

    Article  PubMed  CAS  Google Scholar 

  23. Martynkina LP, Qian W, Shichi H (2002) Naphthoquinone cataract in mice: mitochondrial change and protection by superoxide dismutase. J Ocul Pharmacol Ther 18:231–239

    Article  PubMed  CAS  Google Scholar 

  24. Belusko PB, Nakajima T, Azuma M, Shearer TR (2003) Expression changes in mRNAs and mitochondrial damage in lens epithelial cells with selenite. Biochim Biophys Acta 1623:135–142

    PubMed  CAS  Google Scholar 

  25. Lou MF (2003) Redox regulation in the lens. Prog Retin Eye Res 22:657–682

    Article  PubMed  CAS  Google Scholar 

  26. Kirby TJ (1967) Cataracts produced by triparanol (MER-29). Trans Am Ophthalmol Soc 65:494–543

    PubMed  CAS  Google Scholar 

  27. MacDonald JS, Gerson RJ, Kornbrust DJ, Kloss MW, Prahalada S, Berry PH, Alberts AW, Bokelman DL (1988) Preclinical evaluation of lovastatin. Am J Cardiol 62:16J–27J

    Article  PubMed  CAS  Google Scholar 

  28. Gerson RJ, MacDonald JS, Alberts AW, Kornbrust DJ, Majka JA, Stubbs RJ, Bokelman DL (1989) Animal safety and toxicology of simvastatin and related hydroxy-methylglutaryl-coenzyme A reductase inhibitors. Am J Med 87:28S–38S

    Article  PubMed  CAS  Google Scholar 

  29. Gerson RJ, MacDonald JS, Alberts AW, Chen J, Yudkovitz JB, Greenspan MD, Rubin LF, Bokelman DL (1990) On the etiology of subcapsular lenticular opacities produced in dogs receiving HMG-CoA reductase inhibitors. Exp Eye Res 50:65–78

    Article  PubMed  CAS  Google Scholar 

  30. Gerson RJ, Allen HL, Lankas GR, MacDonald JS, Alberts AW, Bokelman DL (1991) The toxicity of a fluorinated-biphenyl HMG-CoA reductase inhibitor in beagle dogs. Fundam Appl Toxicol 16:320–329

    Article  PubMed  CAS  Google Scholar 

  31. Mosley ST, Kalinowski SS, Schafer BL, Tanaka RD (1989) Tissue-selective acute effects of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase on cholesterol biosynthesis in lens. J Lipid Res 30:1411–1420

    PubMed  CAS  Google Scholar 

  32. Aleo MD, Drupa CA, Fritz CA, Walsh CM, Whitman-Sherman JL, Fortner JH (2001) Alterations in lenticular sterol content precede CJ-12,918-induced cataract formation. Toxicol Sci 60(Suppl):101

    Google Scholar 

  33. Baltrukonis DJ, Fortner JH, Somps CJ, Ryan AM, Aleo MD, Verdugo ME (2003) Comparisons between U18666A, naphthalene, and galactose on lens cholesterol biosynthesis and evaluation of cataract progression by Scheimpflug and slit lamp exams Invest. Ophthalmol Vis Sci 44:3489

    Google Scholar 

  34. Simic D, Deng S, Somps CJ (2008) Drug-induced lens toxicity and differential expression of miRNA Invest. Ophthalmol Vis Sci 49:2780

    Google Scholar 

  35. Cheng Q, Gerald Robison W, Samuel Zigler J (2002) Geranylgeranyl pyrophosphate counteracts the cataractogenic effect of lovastatin on cultured rat lenses. Exp Eye Res 75:603–609

    Article  PubMed  CAS  Google Scholar 

  36. Rao PV, Robison WG Jr, Bettelheim F, Lin LR, Reddy VN, Zigler JS Jr (1997) Role of small GTP-binding proteins in lovastatin-induced cataracts. Invest Ophthalmol Vis Sci 38:2313–2321

    PubMed  CAS  Google Scholar 

  37. Maddala RL, Reddy VN, Rao PV (2001) Lovastatin-induced cytoskeletal reorganization in lens epithelial cells: Role of Rho GTPases. Invest Ophthalmol Vis Sci 42:2610–2615

    PubMed  CAS  Google Scholar 

  38. Cenedella RJ, Kuszak JR, Al-Ghoul KJ, Qin S, Sexton PS (2003) Discordant expression of the sterol pathway in lens underlies simvastatin-induced cataracts in Chbb: Thom rats. J Lipid Res 44:198–211

    Article  PubMed  CAS  Google Scholar 

  39. De Vries ACJ, Cohen LH (1993) Different effects of the hypolipidemic drugs pravastatin and lovastatin on the cholesterol biosynthesis of the human ocular lens in organ culture and on the cholesterol content of the rat lens in vivo. Biochim Biophys Acta 1167:63–69

    PubMed  Google Scholar 

  40. De Vries ACJ, Vermeer MA, Bredman JJ, Bär PR, Cohen L (1993) Cholesterol content of the rat lens is lowered by administration of simvastatin, but not by pravastatin. Exp Eye Res 56:393–399

    Article  PubMed  Google Scholar 

  41. Fukiage C, Azuma M, Nakamura Y, Tamada Y, Shearer TR (1998) Nuclear cataract and light scattering in cultured lenses from guinea pig and rabbit. Curr Eye Res 17:623–635

    Article  PubMed  CAS  Google Scholar 

  42. Slaughter MR, Thakkar H, O’Brien PJ (2003) Differential expression of the lenticular antioxidant system in laboratory animals: A determinant of species predilection to oxidative stress-induced ocular toxicity? Curr Eye Res 26:15–23

    Article  PubMed  Google Scholar 

  43. Bantseev V, McCanna D, Banh A, Wong WW, Moran KL, Dixon DG, Trevithick JR, Sivak JG (2003) Mechanisms of ocular toxicity using the in vitro bovine lens and sodium dodecyl sulfate as a chemical model. Toxicol Sci 73:98–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the technical contributions of Jim Coutcher, Colleen Doshna and Dan Baltrukonis over the years in perfecting the in-house technique and protocol development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Aleo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aleo, M.D. (2011). Assessing Toxic Injuries of Experimental Therapeutics to the Crystalline Lens Using Lens Explant Culture. In: Aschner, M., Suñol, C., Bal-Price, A. (eds) Cell Culture Techniques. Neuromethods, vol 56. Humana Press. https://doi.org/10.1007/978-1-61779-077-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-077-5_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-076-8

  • Online ISBN: 978-1-61779-077-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics