Skip to main content

Antibacterial Application of Engineered Bacteriophage Nanomedicines: Antibody-Targeted, Chloramphenicol Prodrug Loaded Bacteriophages for Inhibiting the Growth of Staphylococcus aureus Bacteria

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 726))

Abstract

The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshikawa, T. T. (2002) Antimicrobial resistance and aging: beginning of the end of the antibiotic era? J. Am. Geriatr. Soc. 50, S226–S229.

    Article  Google Scholar 

  2. Forget, E. J. and Menzies, D. (2006) Adverse reactions to first-line antituberculosis drugs. Expert Opin. Drug Saf. 5, 231–249.

    Article  CAS  Google Scholar 

  3. Yacoby, I., Shamis, M., Bar, H., Shabat, D., and Benhar, I. (2006) Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob. Agents Chemother. 50, 2087–2097.

    Article  CAS  Google Scholar 

  4. Yacoby, I., Bar, H., and Benhar, I. (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob. Agents Chemother. 51, 2156–2163.

    Article  CAS  Google Scholar 

  5. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  CAS  Google Scholar 

  6. Beckett, D., Kovaleva, E., and Schatz, P. J. (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929.

    Article  CAS  Google Scholar 

  7. Scholle, M. D., Kriplani, U., Pabon, A., Sishtla, K., Glucksman, M. J., and Kay, B. K. (2006) Mapping protease substrates by using a biotinylated phage substrate library. Chembiochem 7, 834–838.

    Article  CAS  Google Scholar 

  8. Zou, J., Dickerson, M. T., Owen, N. K., Landon, L. A., and Deutscher, S. L. (2004) Biodistribution of filamentous phage peptide libraries in mice. Mol. Biol. Rep. 31, 121–129.

    Article  CAS  Google Scholar 

  9. Molenaar, T. J., Michon, I., de Haas, S. A., van Berkel, T. J., Kuiper, J., and Biessen, E. A. (2002) Uptake and processing of modified bacteriophage M13 in mice: implications for phage display. Virology 293, 182–191.

    Article  CAS  Google Scholar 

  10. Benhar, I. (2001) Biotechnological applications of phage and cell display. Biotechnol. Adv. 19, 1–33.

    Article  CAS  Google Scholar 

  11. Cortese, R., Felici, F., Galfre, G., Luzzago, A., Monaci, P., and Nicosia, A. (1994) Epitope discovery using peptide libraries displayed on phage. Trends Biotechnol. 12, 262–267.

    Article  CAS  Google Scholar 

  12. Hoogenboom, H. R., de Bruine, A. P., Hufton, S. E., Hoet, R. M., Arends, J. W., and Roovers, R. C. (1998) Antibody phage display technology and its applications. Immunotechnology 4, 1–20.

    Article  CAS  Google Scholar 

  13. Sidhu, S. S., Weiss, G. A., and Wells, J. A. (2000) High copy display of large proteins on phage for functional selections. J. Mol. Biol. 296, 487–495.

    Article  CAS  Google Scholar 

  14. Bar, H., Yacoby, I., and Benhar, I. (2008) Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol. 8, 37.

    Article  Google Scholar 

  15. Berkowitz, S. A. and Day, L. A. (1976) Mass, length, composition and structure of the filamentous bacterial virus fd. J. Mol. Biol. 102, 531–547.

    Article  CAS  Google Scholar 

  16. Enshell-Seijffers, D., Smelyanski, L., and Gershoni, J. M. (2001) The rational design of a “type 88” genetically stable peptide display vector in the filamentous bacteriophage fd. Nucleic Acids Res. 29, E50–E60.

    Article  CAS  Google Scholar 

  17. Nilsson, B., Moks, T., Jansson, B., Abrahmsen, L., Elmblad, A., Holmgren, E., et al. (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1, 107–113.

    Article  CAS  Google Scholar 

  18. Nilsson, J., Larsson, M., Stahl, S., Nygren, P. A., and Uhlen, M. (1996) Multiple affinity domains for the detection, purification and immobilization of recombinant proteins. J. Mol. Recognit. 9, 585–594.

    Article  CAS  Google Scholar 

  19. Enshell-Seijffers, D. and Gershoni, J. M. (2002) Phage display selection and analysis of Ab-binding epitopes. in: Current Protocols in Immunology (Coligan, J. E., Bierer, B. E., Margulies, D. H., Shevach, E. M., and Strober, W., eds) pp. 9.8.1-9.8.27. John Wiley & Sons, Inc., USA.

    Google Scholar 

Download references

Acknowledgments

Studies of targeted drug-carrying phage nanomedicines at the author’s laboratory received a grant from the Israel Public Committee for Allocation of Estate Funds, Ministry of Justice, Israel and by the Israel Cancer Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Benhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vaks, L., Benhar, I. (2011). Antibacterial Application of Engineered Bacteriophage Nanomedicines: Antibody-Targeted, Chloramphenicol Prodrug Loaded Bacteriophages for Inhibiting the Growth of Staphylococcus aureus Bacteria. In: Hurst, S. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 726. Humana Press. https://doi.org/10.1007/978-1-61779-052-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-052-2_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-051-5

  • Online ISBN: 978-1-61779-052-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics