Skip to main content

Computerized Molecular Modeling of Carbohydrates

  • Protocol
  • First Online:
The Plant Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 715))

Abstract

Computerized molecular modeling continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studies might be of more use to computation-inexperienced carbohydrate chemists. New work on intrinsic variability of glucose, an overall theme, is described.

*Prepared for the Methods in Molecular Biology Series, The Plant Cell Wall: Methods and Protocols, Book Editor Zoë Popper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurihara, Y. and Ueda, K. (2006) An investigation of the pyranose ring interconversion path of α-l-idose calculated using density functional theory. Carbohydr Res 341, 2565–2574.

    Article  PubMed  CAS  Google Scholar 

  2. Steiner, T. and Saenger, W. (1998) Closure of the cavity in permethylated cyclodextrins through glucose inversion, flipping, and kinking. Angew Chem Int Ed 37, 3404–3407.

    Article  CAS  Google Scholar 

  3. Añibarro, M., Gessler, K., Usón, I., Sheldrick, G. M., Harata, K., Hirayama, K., Abe, Y. and Saenger, W. (2001) Effect of peracylation of β-cyclodextrin on the molecular structure and on the formation of inclusion complexes: an X-ray study. J Am Chem Soc 123, 11854–11862.

    Article  PubMed  Google Scholar 

  4. Gould, I. R., Bettley, H. A.-A. and Bryce, R. A. (2007) Correlated ab initio quantum chemical calculations of di- and trisaccharide conformations. J Comput Chem 28, 1965–1973.

    Article  PubMed  CAS  Google Scholar 

  5. Barrows, S. E., Dulles, F. J., Cramer, C. J., French, A. D. and Truhlar, D. G. (1995) Relative stability of alternative chair forms and hydroxy-methyl conformations of β-glucopyranose. Carbohydr Res 276, 219–251.

    Article  CAS  Google Scholar 

  6. Grindley, T. B. (2008) Structure and conformation of carbohydrates. In: Fraser-Reid, B. O., Tatsuta, K. and Thiem, J. eds., Glycosciences. Springer, Berlin, pp. 3–55.

    Chapter  Google Scholar 

  7. McNaught, A. D. (1996) Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl Chem 68, 1919–2008. http://www.chem.qmul.ac.uk/iupac/2carb/00n01.html#00.

  8. French, A. D. and Dowd, M. K. (1994) Analysis of the ring-form tautomers of psicose with MM3 (92). J Comput Chem 15, 561–570.

    Article  CAS  Google Scholar 

  9. Boeyens, J.C.A. (1978) The conformation of six-membered rings. J Cryst Mol Struct 8, 317–320.

    Article  Google Scholar 

  10. Cremer, D. and Pople, J. A. (1975) A general definition of ring puckering coordinates. J Am Chem Soc 97, 1354–1358.

    Article  CAS  Google Scholar 

  11. Altona, C. and Sundaralingam, M. (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc 94, 8205–8212.

    Article  PubMed  CAS  Google Scholar 

  12. Haasnoot, C. A. G. (1992) The conformation of six-membered rings described by puckering coordinates derived from endocyclic torsion angles. J Am Chem Soc 114, 882–887.

    Article  CAS  Google Scholar 

  13. Zotov, A. Y., Palyulin, V. A. and Zefirov, N. S. (1997) RICON – the computer program for the quantitative investigations of cyclic organic molecule conformations. J Chem Inf Comput Sci 37, 766–773.

    Article  CAS  Google Scholar 

  14. Geremia, S., Vicentini, L. and Calligaris, M. (1998) Stereochemistry of ruthenium bis-chelate disulfoxide complexes. A molecular mechanics investigation. Inorg Chem 37, 4094–4103.

    Article  PubMed  CAS  Google Scholar 

  15. Bérces, A., Whitfield, D. M. and Nukada, T. (2001) Quantitative description of six-­membered ring conformations following the IUPAC conformational nomenclature. Tetrahedron 57, 477–491.

    Article  Google Scholar 

  16. Joshi, N. V. and Rao, V. S. R. (1979) Flexibility of the pyranose ring in α- and β-d-glucoses. Biopolymers 18, 2993–3004.

    Article  CAS  Google Scholar 

  17. Hill, D. and Reilly, P. J. (2007) Puckering coordinates of monocyclic rings by triangular decomposition. J Chem Inf Model 47, 1031–1035.

    Article  PubMed  CAS  Google Scholar 

  18. French, A. D. and Johnson, G. P. (2007) Linkage and pyranosyl ring twisting in cyclodextrins. Carbohydr Res 342, 1223–1237.

    Article  PubMed  CAS  Google Scholar 

  19. Bader, R. F. W. (1990) Atoms in Molecules – A Quantum Theory. Oxford University Press, Oxford.

    Google Scholar 

  20. Csonka, G. I., Kolossváry, I., Császár, P., Éliás, K. and Csizmadia, I. G. (1997) The conformational space of selected aldo-pyrano-hexoses J Mol Struct: THEOCHEM 395–396, 29–40.

    Article  Google Scholar 

  21. Klein, R. A. (2002) Electron density topological analysis of hydrogen bonding in glucopyranose and hydrated glucopyranose. J Am Chem Soc 124, 13931–19937.

    Article  PubMed  CAS  Google Scholar 

  22. Klein, R. A. (2006) Lack of intramolecular hydrogen bonding in glucopyranose: vicinal hydroxyl groups exhibit negative cooperativity. Chem Phys Lett 433, 165–169.

    Article  CAS  Google Scholar 

  23. Koch, U. and Popelier, P. (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99, 9747–9754.

    Article  CAS  Google Scholar 

  24. Schrodinger, Portland, Oregon. http://www.schrodinger.com.

  25. Çarçabal, P., Jockusch, R. A., Hunig, I., Snoek, L. C., Kroemer, R. T., Davis, B. G., Gamblin, D. P., Compagnon, I., Oomens, J. and Simons, J. P. (2005) Hydrogen bonding and cooperativity in isolated and hydrated sugars: mannose, galactose, glucose, and lactose. J Am Chem Soc 127, 11414–11425.

    Article  PubMed  Google Scholar 

  26. Allinger, N. L., Yuh, Y. H. and Lii, J.-H. (1989) Molecular mechanics. The MM3 force field for hydrocarbons. 1. J Am Chem Soc 111, 8551–8567.

    Article  CAS  Google Scholar 

  27. Allen, F. H. (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B: Struct Sci 58, 380–388.

    Article  Google Scholar 

  28. Naidoo, K. J. and Brady, J. W. (1997) The application of simulated annealing to the conformational analysis of disaccharides. Chem Phys 224, 263–273.

    Article  CAS  Google Scholar 

  29. Johnson, G. P., Petersen, L., French, A. D. and Reilly, P. J. (2009) Twisting of glycosidic bonds by hydrolases. Carbohydr Res 344, 2157–2166.

    Article  PubMed  CAS  Google Scholar 

  30. Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrikson, T. and Still, W. C. (1990) Macromodel – an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11, 440–467.

    Article  CAS  Google Scholar 

  31. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. and Jorgensen, W. J. (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105, 6474–6487.

    Article  CAS  Google Scholar 

  32. Shen, T., Langan, P., French, A. D., Johnson, G. P. and Gnanakaran, S. (2009) ­Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Amer Chem Soc 131, 14786–14794.

    Article  PubMed  CAS  Google Scholar 

  33. Campen, R. K., Verde, A. V. and Kubicki, J. D. (2007) Influence of glycosidic linkage neighbors on disaccharide conformation in vacuum. J Phys Chem B 111, 13775–13785.

    Article  PubMed  CAS  Google Scholar 

  34. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr. and Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106, 765–784.

    Article  CAS  Google Scholar 

  35. Woods, R. J., Dwek, R. A., Edge, C. J. and Fraser-Reid, B. (1995) Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development. J Phys Chem 99, 3832–3846.

    Article  CAS  Google Scholar 

  36. Ferretti, V., Bertolasi, V. and Gilli, G. (1984) Structure of 6-kestose monohydrate, C18H31O16.H2O. Acta Crystallogr C 40, 531–535.

    Article  Google Scholar 

  37. Jeffrey, G. A. (1997) Introduction to Hydrogen Bonding. Oxford University Press, New York, p. 12.

    Google Scholar 

  38. Parthasarathi, R., Elango, M., Subramanian, V. and Sathyamurthy, N. (2009) Structure and stability of water chains (H2O) n , n = 5–20. J Phys Chem A 113, 3744–3749.

    Article  PubMed  CAS  Google Scholar 

  39. Grabowski, S. J. (2006) Hydrogen Bonding – New Insights. Springer, Dordrecht, The Netherlands, 519pp.

    Book  Google Scholar 

  40. Yoneda, Y., Mereiter, K., Jaeger, C., Brecker, L., Kosma, P., Rosenau, T. and French, A. (2008) van der Waals versus hydrogen-bonding forces in a crystalline analog of cellotetraose: ­cyclohexyl 4′-o-cyclohexyl β-d-cellobioside cyclohexane solvate. J Am Chem Soc 130, 16678–16690.

    Article  PubMed  CAS  Google Scholar 

  41. Lii, J.-H., Chen, K.-H., Johnson, G. P., French, A. D. and Allinger, N. L. (2005) The external-anomeric torsional effect. Carbohydr Res 340, 853–862.

    Article  PubMed  CAS  Google Scholar 

  42. Jeffrey, G. A., Pople, J. A. and Radom, L. (1972) The application of ab initio molecular orbital theory to the anomeric effect. A comparison of theoretical predictions and experimental data on conformations and bond lengths in some pyranoses and methyl pyranosides. Carbohydr Res 25, 117–131.

    Article  CAS  Google Scholar 

  43. Jeffrey, G. A., Pople, J. A. and Radom, L. (1974) The application of ab initio molecular orbital theory to structural moieties of carbohydrates. Carbohydr Res 38, 81–95.

    Article  CAS  Google Scholar 

  44. Jaradat, D. M. M., Mebs, S., Chęcińska, L. and Luger, P. (2007) Experimental charge density of sucrose at 20 K: bond topological, atomic, and intermolecular quantitative properties. Carbohydr Res 342, 1480–1489.

    Article  PubMed  CAS  Google Scholar 

  45. Tvaroška, I. and Bleha, T. (1979) Lone pair interactions in dimethoxymethane and anomeric effect. Can J Chem 57, 424–435.

    Article  Google Scholar 

  46. Allinger, N. L., Schmitz, L. R., Motoc, I., Bender, C. and Labanowski, J. K. (1992) Heats of formation of organic molecules. 2. The basis for calculations using either ab initio or molecular mechanics methods. Alcohols and ethers. J Am Chem Soc 114, 2880–2883.

    Article  CAS  Google Scholar 

  47. French, A. D., Kelterer, A.-M., Johnson, G. P. and Dowd, M. K. (2000) B3LYP/6-31G*, RHF/6-31G* and MM3 heats of formation of disaccharide analogs. J Mol Struct 556, 303–313.

    Article  CAS  Google Scholar 

  48. Takahashia, O., Yamasakia, K., Kohnob, Y., Uedab, K., Suezawac, H. and Nishio, M. (2009) The origin of the generalized anomeric effect: possibility of CH/n and CH/π hydrogen bonds. Carbohydr Res 344, 1225–1229.

    Article  Google Scholar 

  49. Perdew, J. P., Ruzsinszky, A., Constantin, L. A., Sun, J. and Csonka, G. I. (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theory Comput 5, 902–908.

    Article  CAS  Google Scholar 

  50. Csonka, G. I., French, A. D., Johnson, G. P. and Stortz, C. A. (2009) Evaluation of density functionals and basis sets for carbohydrates. J Chem Theory Comput 5, 679–692.

    Article  CAS  Google Scholar 

  51. French, A. D. and Johnson, G. P. (2004) Advanced conformational energy surfaces for cellobiose. Cellulose 11, 449–462.

    Article  CAS  Google Scholar 

  52. Strati, G. L., Willett, J. L. and Momany, F. A. (2002) Ab initio computational study of β-cellobiose conformers using B3LYP/6-311++G**. Carbohydr Res 337, 1851–1859.

    Article  PubMed  CAS  Google Scholar 

  53. Cocinero, E. J., Gamblin, D. P., Davis, B. G. and Simons, J. P. (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 131, 11117–11123.

    Article  PubMed  CAS  Google Scholar 

  54. Biarnés, X., Ardèvol, A., Planas, A., Rovira, C., Laio, A. and Parrinello, M. (2007) The conformational free energy landscape of β-d-glucopyranose. Implications for substrate preactivation in β-glucoside hydrolases. J Am Chem Soc 129, 10686–10693.

    Article  PubMed  Google Scholar 

  55. French, A. D. and Johnson, G. P. (2006) Quantum mechanics studies of cellobiose conformations. Can J Chem 84, 603–612.

    Article  CAS  Google Scholar 

  56. Lii, J.-H., Chen, K.-H. and Allinger, N. L. (2003) Alcohols, ethers, carbohydrates, and related compounds. IV. Carbohydrates. J Comput Chem 24, 1504–1513.

    Article  PubMed  CAS  Google Scholar 

  57. Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeriño, J., Daniels, C. R., Foley, B. L. and Woods, R. J. (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29, 622–655.

    Article  PubMed  CAS  Google Scholar 

  58. Tschampel, S. M., Kennerty, M. R. and Woods, R. J. (2007) TIP5P-consistent treatment of electrostatics for biomolecular simulations. J Chem Theory Comput 3, 1721–1733.

    Article  CAS  Google Scholar 

  59. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4, 187–217.

    Article  CAS  Google Scholar 

  60. Ha, S. N., Giammona, A., Field, M. and Brady, J. W. (1988) A revised potential-energy surface for molecular mechanics studies of carbohydrates. Carbohydr Res 180, 207–221.

    Article  PubMed  CAS  Google Scholar 

  61. Kuttel, M., Brady, J. W. and Naidoo, K. J. (2002) Carbohydrate solution simulations: producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem 23, 1236–1243.

    Article  PubMed  CAS  Google Scholar 

  62. Guvench, O., Greene, S. N., Kamath, G., Brady, J. W., Venable, R. M., Pastor, R. W. and Mackerell, Jr., A. D. (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29, 2543–2564.

    Article  PubMed  CAS  Google Scholar 

  63. Hatcher, E. R., Guvench, O. and MacKerell, Jr., A. D. (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates, and inositol. J Chem Theory Comput 5, 1315–1327.

    Article  PubMed  CAS  Google Scholar 

  64. Oostenbrink, C., Soares, T. A., van der Vegt, N. F. A. and van Gusteren, W. F. (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34, 273–284.

    Article  PubMed  CAS  Google Scholar 

  65. Stortz, C. A., Johnson, G. P., French, A. D. and Csonka, G. I. (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344, 2217–2228.

    Article  PubMed  CAS  Google Scholar 

  66. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926–935.

    Article  CAS  Google Scholar 

  67. DeMarco, M. L. and Woods, R. J. (2008) Structural glycobiology: a game of snakes and ladders. Glycobiology 18, 426–440.

    Article  PubMed  CAS  Google Scholar 

  68. Krupička, M. and Tvaroška, I. (2009) Hybrid quantum mechanical/molecular mechanical investigation of the β-1,4-galactosyltransferase-I mechanism. J Phys Chem B 113, (32), 11314–11319.

    Article  PubMed  Google Scholar 

  69. Zhang, Y., Luo, M. and Schramm, V. L. (2009) Transition states of Plasmodium falciparum and human orotate phosphoribosyltransferases. J Am Chem Soc 131, 4685–4694.

    Article  PubMed  CAS  Google Scholar 

  70. French, A. D., Kelterer, A.-M., Cramer, C. J., Johnson, G. P. and Dowd, M. K. (2000) A QM/MM analysis of the conformations of crystalline sucrose moieties. Carbohydr Res 326, 305–322.

    Article  PubMed  CAS  Google Scholar 

  71. Zugenmaier, P. (2008) Crystalline Cellulose and Derivatives. Characterization and Structrures. Springer, Berlin, pp. 8 and 38.

    Google Scholar 

  72. Matthews, J. F., Skopec, C. E., Mason, P. E., Zuccato, P., Torget, R. W., Sugiyama, J., Himmel, M. E. and Brady, J. W. (2006). Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341, 138–152.

    Article  PubMed  CAS  Google Scholar 

  73. Yui, T. and Hayashi, S. (2009) Structural stability of the solvated cellulose IIII crystal models: a molecular dynamics study. Cellulose 16, 151–165.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

French, A.D., Johnson, G.P. (2011). Computerized Molecular Modeling of Carbohydrates. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 715. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-008-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-008-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-007-2

  • Online ISBN: 978-1-61779-008-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics