Skip to main content

Brain Redox Imaging

  • Protocol
  • First Online:
Magnetic Resonance Neuroimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 711))

Abstract

Nitroxyl contrast agents (nitroxyl radicals, also known as nitroxide) are paramagnetic species, which can react with reactive oxygen species (ROS) to lose paramagnetism to be diamagnetic species. The paramagnetic nitroxyl radical forms can be detected by using electron paramagnetic resonance imaging (EPRI), Overhauser MRI (OMRI), or MRI. The time course of in vivo image intensity induced by paramagnetic redox-sensitive contrast agent can give tissue redox information, which is the so-called redox imaging technique. The redox imaging technique employing a blood–brain barrier permeable nitroxyl contrast agent can be applied to analyze the pathophysiological functions in the brain. A brief theory of redox imaging techniques is described, and applications of redox imaging techniques to brain are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sano, H., Matsumoto, K., Utsumi, H. Synthesis and imaging of blood-brain-barrier permeable nitroxyl-probes for free radical reactions in brain of living mice. Biochem Mol Biol Int 1997;42:641–647.

    PubMed  CAS  Google Scholar 

  2. Sano, H., Naruse, M., Matsumoto, K., Oi, T., Utsumi, H. A new nitroxyl-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med 2000;28:959–969.

    Article  PubMed  CAS  Google Scholar 

  3. Samuni, A. M., DeGraff, W., Krishna, M. C., Mitchell, J. B. Nitroxides as antioxidants: Tempol protects against EO9 cytotoxicity. Mol Cell Biochem 2002;234/235:327–333.

    Article  CAS  Google Scholar 

  4. Krishna, M. C., Grahame, D. A., Samuni, A., Bitchell, J. B., Russo, A. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci USA 1992;89:5537–5541.

    Article  PubMed  CAS  Google Scholar 

  5. Ui, I., Okajo, A., Endo, K., Utsumi, H., Matsumoto, K. Effect of hydrogen peroxide in redox status estimation using nitroxyl spin probe. Free Radic Boil Med 2004;37:2012–2017.

    Article  CAS  Google Scholar 

  6. Takeshita, K., Utsumi, H., Hamada, A. Whole mouse measurement of paramagnetism-loss of nitroxide free radical in lung with a L-band ESR spectrometer. Biochem Mol Biol Int 1993;29:17–24.

    PubMed  CAS  Google Scholar 

  7. Miura, Y., Utsumi, H., Hamada, A. Antioxidant activity of nitroxide radicals in lipid peroxidation of rat liver microsomes. Arch Biochem Biophys 1993;300:148–156.

    Article  PubMed  CAS  Google Scholar 

  8. Blonder, J. M., McCalden, T. A., Hsia, C. J., Billings, R. E. Polynitroxyl albumin plus tempol attenuates liver injury and inflammation after hepatic ischemia and reperfusion. Life Sci 2000;67:3231–3239.

    Article  PubMed  CAS  Google Scholar 

  9. Samuni, A. M., DeGraff, W., Krishna, M. C., Mitchell, J. B. Nitroxides as antioxidants: Tempol protects against EO9 cytotoxicity. Mol Cell Biochem 2002;234–235:327–333.

    Article  PubMed  Google Scholar 

  10. Herrling, T., Jung, K., Fuchs, J. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin. Spectrochim Acta A 2006;63:840–845.

    Article  Google Scholar 

  11. Venditti, E., Scirè, A., Tanfani, F., Greci, L., Damiani, E. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins. Biochim Biophys Acta 2008;1780:58–68.

    Article  PubMed  CAS  Google Scholar 

  12. Mitchell, J. B., DeGraff, W., Kaufman, D., Krishna, M. C., Samuni, A., Finkelstein, E., Ahn, M. S., Hahn, S. M., Gamson, J., Russo, A. Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol. Arch Biochem Biophys 1991;289:62–70.

    Article  PubMed  CAS  Google Scholar 

  13. Goffman, T., Cuscela, D., Glass, J., Hahn, S., Krishna, C. M., Lupton, G., Mitchell, J. B. Topical application of nitroxide protects radiation-induced alopecia in guinea pigs. Int J Radiat Oncol Biol Phys 1992;22:803–806.

    Article  PubMed  CAS  Google Scholar 

  14. Miura, Y., Anzai, K., Ueda, J., Ozawa, T. Novel approach to in vivo screening for radioprotective activity in whole mice: In vivo electron spin resonance study probing the redox reaction of nitroxyl. J Radiat Res 2000;41:103–111.

    Article  PubMed  CAS  Google Scholar 

  15. Vitolo, J. M., Cotrim, A. P., Sowers, A. L., Russo, A., Wellner, R. B., Pillemer, S. R., Mitchell, J. B., Baum, B. J. The stable nitroxide tempol facilitates salivary gland protection during head and neck irradiation in a mouse model. Clin Cancer Res 2004;10:1807–1812.

    Article  PubMed  CAS  Google Scholar 

  16. Anzai, K., Ueno, M., Yoshida, A., Furuse, M., Aung, W., Nakanishi, I., Moritake, T., Takeshita, K., Ikota, N. Comparison of stable nitroxide, 3-substituted 2,2,5,5-tetramethylpyrrolidine-N-oxyls, with respect to protection from radiation, prevention of DNA damage, and distribution in mice. Free Radic Biol Med 2006;40:1170–1178.

    Article  PubMed  CAS  Google Scholar 

  17. Samuni, A., Mitchell, J. B., DeGraff, W., Krishna, C. M., Samuni, U., Russo, A. Nitroxide SOD-mimics: Modes of action. Free Radic Res Commun 1991;12–13:187–194.

    Article  PubMed  Google Scholar 

  18. DeGraff, W. G., Krishna, M. C., Russo, A., Mitchell, J. B. Antimutagenicity of a low molecular weight superoxide dismutase mimic against oxidative mutagens. Environ Mol Mutagen 1992;19:21–26.

    Article  PubMed  CAS  Google Scholar 

  19. Krishna, M. C., Russo, A., Mitchell, J. B., Goldstein, S., Dafni, H., Samuni, A. Do nitroxide antioxidants act as scavengers of O2 – or as SOD mimics? J Biol Chem 1996;271:26026–26031.

    Google Scholar 

  20. Matsumoto, K., Okajo, A., Nagata, K., DeGraff, W. G., Nyui, M., Ueno, M., Nakanishi, I., Ozawa, T., Mitchell, J. B., Krishna, M. C., Yamamoto, H., Endo, K., Anzai, K. Detection of free radical reactions in an aqueous sample induced by low linear-energy-transfer irradiation. Biol Pharm Bull 2009;32:542–547.

    Article  PubMed  CAS  Google Scholar 

  21. Hahn, S. M., Krishna, C. M., Samuni, A., DeGraff, W., Cuscela, D. O., Johnstone, P., Mitchell, J. B. Potential use of nitroxides in radiation oncology. Cancer Res 1994;54:2006s–2010s.

    PubMed  CAS  Google Scholar 

  22. Hahn, S. M., Krishna, M. C., DeLuca, A. M., Coffin, D., Mitchell, J. B. Evaluation of the hydroxylamine tempol-H as an in vivo radioprotector. Free Radic Biol Med 2000;28:953–958.

    Article  PubMed  CAS  Google Scholar 

  23. Hahn, S. M., Sullivan, F. J., DeLuca, A. M., Krishna, C. M., Wersto, N., Venzon, D., Russo, A., Mitchell, J. B. Evaluation of tempol radioprotection in a murine tumor model. Free Radic Biol Med 1997;22:1211–1216.

    Article  PubMed  CAS  Google Scholar 

  24. Cotrim, A. P., Hyodo, F., Matsumoto, K., Sowers, A. L., Cook, J. A., Baum, B. J., Krishna, M. C., Mitchell, J. B. Differential radiation protection of salivary glands versus tumor by tempol with accompanying tissue assessment of tempol by magnetic resonance imaging. Clin Cancer Res 2007;13:4928–4933.

    Article  PubMed  CAS  Google Scholar 

  25. Subramanian, S., Matsumoto, K., Mitchell, J. B., Krishna, M. C. Radio frequency continuous-wave and time-domain EPR imaging and overhauser-enhanced magnetic resonance imaging of small animals: Instrumental developments and comparison of relative merits for functional imaging. NMR Biomed 2004;17:263–294.

    Article  PubMed  CAS  Google Scholar 

  26. Matsumoto, K., Subramanian, S., Murugesan, R., Bitchell, J. B., Krishna, M. C. Spatially resolved biologic information from in vivo EPRI, OMRI, and MRI. Antioxid Redox Signal 2007;9:1125–1141.

    Article  PubMed  CAS  Google Scholar 

  27. Hyodo, F., Chuang, K. H., Goloshevsky, A. G., Sulima, A., Gfiffiths, G. L., Mitchell, J. B., Koretsky, A. P., Krishna, M. C. Brain redox imaging using blood-brain-barrier-permeable nitroxide MRI contrast agent. J Cereb Blood Flow Metab 2008;28:1165–1174.

    Article  PubMed  CAS  Google Scholar 

  28. Slemmer, J. E., Shacka, J. J., Sweeney, M. I., Weber, J. T. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 2008;15:404–414.

    Article  PubMed  CAS  Google Scholar 

  29. Yokoyama, H., Kuroiwa, H., Yano, R., Araki, T. Targeting reactive oxygen species, reactive nitrogen species and inflammation in MPTP neurotoxicity and parkinson’s disease. Neurol Sci 2008;29:293–301.

    Article  PubMed  Google Scholar 

  30. Guan, Z. Z. Corss-talk between oxidative stress and modification of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer’s disease. Acta Pharmacol Sci 2008;29:773–780.

    Article  CAS  Google Scholar 

  31. Manda, K., Ueno, M., Anzai, K. Space radiation-induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: Ameliorative potential of the melatonin metabolite, AFMK. J Pineal Res 2008;45:430–438.

    Google Scholar 

  32. Thotala, D. K., Hallahan, D. E., Yazlovitskaya, E. M. Inhibition of glycogen synthase kinase 3β attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Res 2008;68:5859–5868.

    Article  PubMed  CAS  Google Scholar 

  33. Fuller, C. D., Schillerstrom, J. E., Jones, W. E., 3rd, Boersma, M., Royall, D. R., Fuss, M. Prospective evaluation of pretreatment executive cognitive impairment and depression in patients referred for radiotherapy. Int J Radiat Oncol Biol Phys 2008;72:529–533.

    Article  PubMed  Google Scholar 

  34. Utsumi, H., Muto, E., Masuda, S., Hamada, A. In vivo ESR measurment of free radicals in whole mice. Biochem Biophys Res Commun 1990;172:1342–1348.

    Article  PubMed  CAS  Google Scholar 

  35. Utsumi, H., Yamada, K. In vivo electron spin resonance-computed tomography/nitroxyl probe technique for non-invasive analysis of oxidative injuries. Arch Biochem Biophys 2003;416:1–8.

    Article  PubMed  CAS  Google Scholar 

  36. Phumala, N., Ide, T., Utsumi, H. Noninvasive evaluation of in vivo free radical reactions catalyzed by iron using in vivo ESR spectroscopy. Free Radic Biol Med 1999;26:1209–1217.

    Article  PubMed  CAS  Google Scholar 

  37. Kamatari, M., Yasui, H., Ogata, T., Sakurai, H. Local pharmacokinetic analysis of a stable spin probe in mice by in vivo L-band ESR with surface-coil-type resonator. Free Radic Res 2002;36:1115–1125.

    Article  CAS  Google Scholar 

  38. Ilangovan, G., Li, H., Zweier, J. L., Kuppusamy, P. In vivo measurement of tumor redox environment using EPR spectroscopy. Mol Cell Biochem 2002;234/235:393–398.

    Article  CAS  Google Scholar 

  39. Yasukawa, K., Kasazaki, K., Hyodo, F., Utsumi, H. Non-invasive analysis of reactive oxygen species generated in rats with water immersion restraint-induced gastric lesions using in vivo electron spin resonance spectroscopy. Free Radic Res 2004;38:147–155.

    Article  PubMed  CAS  Google Scholar 

  40. Takechi, K., Tamura, H., Yamaoka, K., Sakurai, H. Pharmacokinetic analysis of free radicals by in vivo BCM (blood circulation monitoring)-ESR method. Free Radic Res 1996;26:483–496.

    Article  Google Scholar 

  41. Matsumoto, K., Krishna, M. C., Mitchell, J. B. Novel pharmacokinetic measurement using X-band EPR and simulation of in vivo decay of various nitroxyl spin probes in mouse blood. J Pharmacol Exp Ther 2004;310:1076–1083.

    Article  PubMed  CAS  Google Scholar 

  42. Matsumoto, K., Okajo, A., Kobayashi, T., Mitchell, J. B., Krishna, M. C., Endo, K. Estimation of free radical formation by beta-ray irradiation in rat liver. J Biochem Biophys Methods 2005;63:79–90.

    Article  PubMed  CAS  Google Scholar 

  43. Okajo, A., Matsumoto, K., Mitchell, J. B., Krishna, M. C., Endo, K. Competition of nitroxyl contrast agents as an in vivo tissue redox probe: Comparison of pharmacokinetics by the bile flow monitoring (BFM) and blood circulating monitoring (BCM) method suing X-band EPR and simulation of decay profiles. Magn Reson Med 2006;56:422–431.

    Article  PubMed  CAS  Google Scholar 

  44. Kuppusamy, P., Afeworki, M., ShankarR, A., Coffin, D., Krishna, M. C., Hahn, S. M., Mitchell, J. B., Zweier, J. L. In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in murine model. Cancer Res 1998;58:1562–1568.

    PubMed  CAS  Google Scholar 

  45. Kuppusamy, P., Li, H., Ilangovan, G., Cardounel, A. J., Zweier, J. L., Yamada, K., Krishna, M. C., Mitchell, J. B. Noninvasive imaging of redox status and its modification by tissue glutathione levels. Cancer Res 2002;62:307–312.

    PubMed  CAS  Google Scholar 

  46. Ilangovan, G., Li, H., Zweier, J. L., Krishna, M. C., Mitchell, J. B., Kuppusamy, P. In vivo measurement of regional oxygenation and imaging of redox status in RIF-1 murine tumor: Effect of carbogen-breathing. Magn Reson Med 2002;48:723–730.

    Article  PubMed  CAS  Google Scholar 

  47. Yamada, K., Kuppusamy, P., English, S., Yoo, J., Irie, A., Subramanian, S., Mitchell, J. B., Krishna, M. C. Feasibility and assessment of non-invasive in vivo redox status using electron paramagnetic resonance imaging. Acta Radiol 2002;43:433–440.

    Article  PubMed  Google Scholar 

  48. Ohno, K., Watanabe, M. Electron paramagnetic resonance imaging using magnetic-field-gradient spinning. J Magn Reson 2000;143:274–279.

    Article  PubMed  CAS  Google Scholar 

  49. Deng, Y., He, G., Petryakov, S., Kuppusamy, P., Zweier, J. L. Fast EPR imaging at 300 MHz using spinning magnetic field gradients. J Magn Reson 2004;168:220–227.

    Article  PubMed  CAS  Google Scholar 

  50. Subramanian, S., Koscielniak, J. W., Devasahayam, N., Pursley, R. H., Pohida, T. J., Krishna, M. C. A new strategy for fast radiofrequency CW EPR imaging: Direct detection with rapid scan and rotating gradients. J Magn Reson 2007;186:212–219.

    Article  PubMed  CAS  Google Scholar 

  51. Di Giuseppe, S., Placidi, G., Sotgiu, A. New experimental apparatus for multimodal resonance imaging: Initial EPRI and NMRI experimental results. Phys Med Biol 2001;46:1003–1016.

    Article  PubMed  CAS  Google Scholar 

  52. He, G., Deng, Y., Li, H., Kuppusamy, P., Zweier, J. L. EPR/NMR co-imaging for anatomic registration of free radical images. Magn Reson Med 2002;47:571–578.

    Article  PubMed  Google Scholar 

  53. Hyodo, F., Yasukawa, K., Yamada, K., Utsumi, H. Spatially resolved time-course studies of free radical reactions with an EPRI/MRI fusion technique. Magn Reson Med 2006;56:938–943.

    Article  PubMed  CAS  Google Scholar 

  54. Lurie, D. J., Bussell, D. M., Bell, L. H., Mallard, J. R. Proton electron double resonance imaging of free radical solutions. J Magn Reson 1988;76:366–370.

    CAS  Google Scholar 

  55. Lurie, D. J., Nicholson, I., Foster, M. A., Mallard, J. R. Free radicals imaged in vivo in the rat by using proton-electron double-resonance imaging. Phil Trans R Soc Lond 1990;A333:453–456.

    Article  Google Scholar 

  56. Krishna, M. C., English, S., Yamada, K., Yoo, J., Murugesan, R., Devasahayam, N., Cook, J. A., Golman, K., Ardenkjaer-Larsen, J. H., Subramanian, S., Mitchell, J. B. Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci USA 2002;99:2216–2221.

    Article  PubMed  CAS  Google Scholar 

  57. Overhauser, A. W. Polarization of nuclei in metals. Phys Rev 1953;92:411–415.

    Article  CAS  Google Scholar 

  58. Utsumi, H., Yamada, K., Ichikawa, K., Sakai, K., Kinoshita, Y., Matsumoto, S., Nagai, M. Simultaneous molecular imaging of redox reactions monitored by overhauser-enhanced MRI with 14n- and 15n-labeled nitroxyl radicals. Proc Natl Acad Sci USA 2006;103:1463–1468.

    Article  PubMed  CAS  Google Scholar 

  59. Anzai, K., Saito, K., Takeshita, K., Takahashi, S., Miyazaki, H., Shoji, H., Lee, M. C., Masumizu, T., Ozawa, T. Assessment of ESR-CT imaging by comparison with autoradiography for the distribution of a blood-brain-barrier permeable spin probe, MC-PROXYL, to rodent brain. Magn Reson Imaging 2003;21:765–772.

    Article  PubMed  Google Scholar 

  60. Lee, M. C., Shoji, H., Miyazaki, H., Yoshino, F., Hori, N., Miyake, S., Ikeda, Y., Anzai, K., Ozawa, T. Measurement of oxidative stress in the rodent brain using computerized electron spin resonance tomgraphy. Magn Reson Med Sci 2003;2:79–84.

    Article  PubMed  Google Scholar 

  61. Miyake, N., Shen, J., Liu, S., Shi, H., Liu, W., Yuan, Z., Pritchard, A., Kao, J. P. Y., Kiu, K. J., Rosen, G. M. Acetoxymethoxycarbonyl nitroxides as electron paramagnetic resonance proimaging agents to measure O2 levels in mouse brain: A pharmacokinetic and pharmacodynamic study. J Pharmacol Exp Ther 2006;318:1187–1193.

    Article  PubMed  CAS  Google Scholar 

  62. Yamada, K., Inoue, D., Matsumoto, S., Utsumi, H. In vivo measurement of redox status in streptozotocin-induced diabetic rat using targeted nitroxyl probes. Antioxid Redox Signal 2004;6:605–611.

    Article  PubMed  CAS  Google Scholar 

  63. Tsutsumi, T., Ide, T., Yamato, M., Kudou, W., Andou, M., Hirooka, Y., Utsumi, H., Tsutsui, H., Sunagawa, K. Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovasc Res 2008;77:713–721.

    Article  PubMed  CAS  Google Scholar 

  64. Okajo, A., Ui, I., Manda, S., Nakanishi, I., Matsumoto, K., Anzai, K., Endo, K. Intracellular and extracellular redox environments surrounding redox-sensitive contrast agents under oxidative atmosphere. Biol Pharm Bull 2009;32:535–541.

    Article  PubMed  CAS  Google Scholar 

  65. Utsumi, H., Yasukawa, K., Soeda, T., Yamada, K., Shigemi, R., Yao, T., Tsuneyoshi, M. Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin-induced gastric ulcers in rats. J Pharmacol Exp Ther 2006;317:228–235.

    Article  PubMed  CAS  Google Scholar 

  66. Matsumoto, K., Hyodo, F., Matsumoto, A., Koretsky, A. P., Sowers, A. L., Mitchell, J. B., Krishna, M. C. High resolution mapping of tumor redox status by magnetic resonance imaging using nitroxides as redox-sensitive contrast agents. Clin Cancer Res 2006;12:2455–2462.

    Article  PubMed  CAS  Google Scholar 

  67. Matsumoto, K. Utility decay rates of T1-weighted MRI contrast based on redox-sensitive paramagnetic nitroxyl contrast agents. Biol Pharm Bull 2009;32:711–716.

    Article  PubMed  CAS  Google Scholar 

  68. Hyodo, F., Matsumoto, K., Matsumoto, A., Mitchell, J. B., Krishna, M. C. Probing the intracellular redox status of tumors with magnetic resonance imaging and redox-sensitive contrast agents. Cancer Res 2006;66:9921–9928.

    Article  PubMed  CAS  Google Scholar 

  69. Chuang, K. H., Korestsky, A. Improved neuronal tract tracing using manganese enhanced magnetic resonance imaging with fast T1 mapping. Magn Reson Med 2006;55:604–611.

    Article  PubMed  CAS  Google Scholar 

  70. Zhelev, Z., Bakalova, R., Aoki, I., Matsumoto, K., Gadjeva, V., Anzai, K., Kanno, I. Nitroxyl radicals for labeling of coventional therapeutics and non-invasive magnetic resonance imaging of their permeability for blood-brain barrier: Relationship between structure, blood clearance, and MRI signal dynamic in the brain. Mol Pharm 2009;6:504–512.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matsumoto, Ki., Hyodo, F., Anzai, K., Utsumi, H., Mitchell, J.B., Krishna, M.C. (2011). Brain Redox Imaging. In: Modo, M., Bulte, J. (eds) Magnetic Resonance Neuroimaging. Methods in Molecular Biology, vol 711. Humana Press. https://doi.org/10.1007/978-1-61737-992-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-992-5_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-991-8

  • Online ISBN: 978-1-61737-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics