Skip to main content

Measurement of Proliferation and Disappearance of Regulatory T Cells in Human Studies Using Deuterium-Labeled Glucose

  • Protocol
  • First Online:
Regulatory T Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 707))

Abstract

The in vivo proliferation and disappearance kinetics of lymphocytes may be estimated in humans from rates of deuterium-labeled glucose (2H2-glucose) incorporation into DNA. This protocol describes its application to regulatory T cells (Treg). Because Treg divide frequently, 2H2-glucose is a suitable precursor, achieving high levels of enrichment over a short period. Being nonradioactive and readily administered, it is appropriate for human studies.

There are four phases to the method: labeling, sampling, analysis and modeling. Labeling consists of administration of 2H2-glucose, either intravenously or orally; during this phase, small blood samples are taken to monitor plasma glucose enrichment. Sampling occurs over the ensuing ∼3 weeks; PBMC are collected and sorted according to surface marker expression. Cell separation can be achieved by fluorescence-activated cell sorting (FACS) using CD4, CD45RA and CD25 to define memory Treg (CD4+CD25hi), or by a combination of magnetic bead separation and FACS. Analysis consists of DNA extraction, hydrolysis, derivatization to the pentafluoro tri-acetate (PFTA) derivative, and quantitation of deuterium content by gas-chromatography mass-spectrometry (GC/MS). The ratio of deuterium enrichment in cellular DNA relative to plasma glucose is used to derive the fraction of new cells in the sorted population, and this is modeled as a function of time to derive proliferation and disappearance kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. (2008) Regulatory T cells and immune tolerance. Cell 133, 775–787.

    Article  PubMed  CAS  Google Scholar 

  2. Maloy KJ, Powrie F. (2001) Regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822.

    Google Scholar 

  3. Shevach EM. (2000) Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449.

    Article  PubMed  CAS  Google Scholar 

  4. Pan F, Yu H, Dang EV et al. (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325,1142–1146.

    Article  PubMed  CAS  Google Scholar 

  5. Peng G, Li S, Wu W, Sun Z, Chen Y, Chen Z. (2008) Circulating CD4+ CD25+ regulatory T cells correlate with chronic hepatitis B infection. Immunology 123, 57–65.

    Article  PubMed  CAS  Google Scholar 

  6. Rushbrook SM, Ward SM, Unitt E et al. (2005) Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J. Virol. 79, 7852–7859.

    Article  PubMed  CAS  Google Scholar 

  7. Jeron A, Pfoertner S, Bruder D et al. (2009) Frequency and gene expression profile of regulatory T cells in renal cell carcinoma. Tumour Biol. 30, 160–170.

    Article  PubMed  CAS  Google Scholar 

  8. Asquith B, Debacq C, Macallan DC, Willems L, Bangham C. (2002) Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol. 23, 596–601.

    Article  PubMed  CAS  Google Scholar 

  9. Macallan DC, Asquith B, Irvine A et al. (2003) Measurement and modeling of human T cell kinetics. Eur. J. Immunol. 33, 2316–2326.

    Article  PubMed  CAS  Google Scholar 

  10. Asquith B, Borghans JA, Ganusov VV, Macallan DC. (2009) Lymphocyte kinetics in health and disease. Trends Immunol. 30, 182–189.

    Article  PubMed  CAS  Google Scholar 

  11. Vukmanovic-Stejic M, Zhang Y, Cook JE et al. (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116, 2423–2433.

    Article  PubMed  CAS  Google Scholar 

  12. Busch R, Neese RA, Awada M, Hayes GM, Hellerstein MK. (2007) Measurement of cell proliferation by heavy water labeling. Nat. Protoc. 2, 3045–3057.

    Article  PubMed  CAS  Google Scholar 

  13. Hellerstein MK. (1999) Measurement of T-cell kinetics: recent methodologic advances. Immunol. Today 20, 438–441.

    Article  PubMed  CAS  Google Scholar 

  14. Tough DF, Sprent J. (1994) Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  15. Kovacs JA, Lempicki RA, Sidorov IA et al. (2001) Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J. Exp. Med. 194, 1731–1741.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarting R, Gerdes J, Niehus J, Jaeschke L, Stein H. (1986) Determination of the growth fraction in cell suspensions by flow cytometry using the monoclonal antibody Ki-67. J. Immunol. Methods 90, 65–70.

    Google Scholar 

  17. Quah BJ, Warren HS, Parish CR. (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2, 2049–2056.

    Article  PubMed  CAS  Google Scholar 

  18. Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD. (2007) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat. Protoc. 2, 2057–2067.

    Article  PubMed  CAS  Google Scholar 

  19. Lyons AB. (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods 243, 147–154.

    Article  PubMed  CAS  Google Scholar 

  20. Macallan DC, Fullerton CA, Neese RA, Haddock K, Park S, Hellerstein MK. (1998) Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: Studies in vitro, in animals and in humans. Proc. Natl. Acad. Sci. USA 95, 708–713.

    Article  PubMed  CAS  Google Scholar 

  21. Macallan DC, Wallace DL, Irvine A et al. (2003) Rapid turnover of T cells in acute infectious mononucleosis. Eur. J. Immunol. 33, 2655–2665.

    Article  PubMed  CAS  Google Scholar 

  22. Macallan DC, Wallace D, Zhang Y et al. (2004) Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J. Exp. Med. 200, 255–260.

    Article  PubMed  CAS  Google Scholar 

  23. Wallace DL, Zhang Y, Ghattas H et al. (2004) Direct measurement of T cell subset kinetics in vivo in elderly men and women. J. Immunol. 173, 1787–1794.

    PubMed  CAS  Google Scholar 

  24. Macallan DC, Wallace DL, Zhang Y et al. (2005) B cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood 105, 3633–3640.

    Article  PubMed  CAS  Google Scholar 

  25. Defoiche J, Debacq C, Asquith B et al. (2008) Reduction of B cell turnover in chronic lymphocytic leukaemia. Br. J. Haematol. 143, 240–247.

    Article  PubMed  Google Scholar 

  26. Hellerstein M, Hanley MB, Cesar D et al. (1999) Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat. Med. 5, 83–89.

    Google Scholar 

  27. Hellerstein MK, Hoh RA, Hanley MB et al. (2003) Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest. 112, 956–966.

    PubMed  CAS  Google Scholar 

  28. McCune JM, Hanley MB, Cesar D et al. (2000) Factors influencing T-cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 105, R1–R8.

    Article  PubMed  CAS  Google Scholar 

  29. Kovacs JA, Lempicki RA, Sidorov IA et al. (2005) Induction of prolonged survival of CD4+ T lymphocytes by intermittent IL-2 therapy in HIV-infected patients. J. Clin. Invest. 115, 2139–2148.

    Article  PubMed  CAS  Google Scholar 

  30. Read SW, Lempicki RA, Mascio MD et al. (2008) CD4 T cell survival after intermittent interleukin-2 therapy is predictive of an increase in the CD4 T cell count of HIV-infected patients. J. Infect. Dis. 198, 843–850.

    Article  PubMed  CAS  Google Scholar 

  31. Macallan DC, Asquith B, Zhang Y et al. (2009) Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labelled glucose. Nat. Protoc. 4, 1313–1327.

    Article  PubMed  CAS  Google Scholar 

  32. Stevens RA, Lempicki RA, Natarajan V, Higgins J, Adelsberger JW, Metcalf JA. (2006) General immunologic evaluation of patients with human immunodeficiency virus infection. In: Detrick B, Hamilton RG, Folds JD, editors. Manual of molecular and clinical laboratory immunology. Washington, DC: ASM, 848–861.

    Google Scholar 

  33. Fox SD, Lempicki RA, Hosack DA et al. (2003) A comparison of microLC/electrospray ionization-MS and GC/MS for the measurement of stable isotope enrichment from a [2H2]-glucose metabolic probe in T-cell genomic DNA. Anal. Chem. 75, 6517–6522.

    Article  PubMed  CAS  Google Scholar 

  34. Vrisekoop N, den Braber I, de Boer AB et al. (2008) Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc. Natl. Acad. Sci. USA 105, 6115–6120.

    Google Scholar 

  35. Asquith B, Zhang Y, Mosley AJ et al. (2007) In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection. Proc. Natl. Acad. Sci. USA 104, 8035–8040.

    Article  PubMed  CAS  Google Scholar 

  36. Borghans JA, De Boer RJ. (2007) Quanti­fication of T-cell dynamics: from telomeres to DNA labeling. Immunol. Rev. 216, 35–47.

    PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Medical Research Council (UK), BBSRC (UK), the Wellcome Trust, Merck Serono and the Charitable Trustees of St George’s Hospital, London during the execution of studies included in this report.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vukmanovic-Stejic, M., Zhang, Y., Akbar, A.N., Macallan, D.C. (2011). Measurement of Proliferation and Disappearance of Regulatory T Cells in Human Studies Using Deuterium-Labeled Glucose. In: Kassiotis, G., Liston, A. (eds) Regulatory T Cells. Methods in Molecular Biology, vol 707. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-979-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-979-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-978-9

  • Online ISBN: 978-1-61737-979-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics