Skip to main content

Microfluidic Image Cytometry

  • Protocol
  • First Online:
Cell-Based Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 706))

  • 1043 Accesses

Abstract

Cell-based arrays offer powerful tools for genomics/proteomics and drug discovery, and are widely applicable for most cell lines. However, it is challenging to apply cell-based arrays for in vitro diagnosis due to limited amount of patient samples. Here, we utilized and demonstrated microfluidic image cytometry (MIC), capable of quantitative, single-cell profiling of multiple signaling molecules using only 300–3,000 cells from clinical brain tumor specimens for in vitro molecular diagnosis. First, we characterized the PI3K/AKT/mTOR pathway, which is often over-activated in the brain tumors, in U87 brain tumor cell lines by measuring EGFR, PTEN, pAKT, and pS6 with a MIC platform, and applied this measurement to clinical brain tumor specimens. In conjunction with statistical analysis, we were able to characterize extensive inter- and intra-tumoral molecular heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R., Ellenberg, J. (2006) High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3, 385–390.

    Article  CAS  PubMed  Google Scholar 

  2. Perlman, Z. E., Slack, M. D., Feng, Y., Mitchison, T. J., Wu, L. F., Altschuler, S. J. (2004) Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198.

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka, M., Bateman, R., Rauh, D., Vaisberg, E., Ramachandani, S., Zhang, C., Hansen, K. C., Burlingame, A. L., Trautman, J. K., Shokat, K. M., Adams, C. L. (2005) An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol 3, e128.

    Article  PubMed  Google Scholar 

  4. Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., Zerial, M. (2005) Nature 436, 78–86.

    Article  CAS  PubMed  Google Scholar 

  5. Kamei, K., Ohashi, M., Gschweng, E., Suh, J., Ho, Q., Yu, Z. T. F., Tang, J., Teitell, M., Clark, A. T., Pyle, A. D., Lee, K.-B., Witte, O. N., Tseng, H.-R. (2010) Microfluidic image cytometry for quantitative single-cell profiling of human pluripotent stem cells in chemically defined conditions. Lab on a Chip 10, 1113–1119

    Article  CAS  PubMed  Google Scholar 

  6. Sun, J., Masterman-Smith, M., Graham, N. A., Jiao, J., Mottahedeh, J., Ohashi, M., DeJesus, J., Laks, D. R., Panosyan, E., Park, J., Kamei, K., Lee, K.-B. Wang, H., Yu, Z. T.-F., Lu, Y.-T., Shuang, H., Li, K., Liu, M., Zhang, N., Wang, S., Angenieux, B., Samuels, E., Williams, D., Kankatit, V., Nathanson, D., van Dam, M., Phelps, M., Liau, L., Mischel, P. S., Lazareff, J. A., Kornblum, H. I., Wu, H., Yong, W. H., Graeber, T. G., Tseng, H.-R. (2010) A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res 70, 6128–6138.

    Google Scholar 

  7. Wang, M. Y., Lu, K. V., Zhu, S., Dia, E. Q., Vivanco, I., Shackleford, G. M., Cavenee, W. K., Mellinghoff, I. K., Cloughesy, T. F., Sawyers, C. L., Mischel, P. S (2006) Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66, 7864–7869.

    Article  CAS  PubMed  Google Scholar 

  8. Brittain, S., Paul, K., Zhao, X. M., Whitesides, G. (1998) Soft lithography and microfabrication. Physics World 11, 31–36.

    CAS  Google Scholar 

  9. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., Ingber, D. E. (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3, 335–373.

    Article  CAS  PubMed  Google Scholar 

  10. Wehrens, R., Buydens, L. M. C. (2007) Self- and super-organizing maps in R: the kohonen package. J Stat Soft 21, 1–19.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NanoSystems Biology Cancer Center (NSBCC), the Eli and Edythe Broad Center of Regenerative Medicine, and the Institute of Molecular Medicine at University of California, Los Angeles. H.R.T. was supported by California Institute of Regenerative Medicine. R.D. was supported by the Johnsson Comprehensive Cancer Center and the California NanoSystems Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Kamei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kamei, Ki., Sun, J., Tseng, HR., Damoiseaux, R. (2011). Microfluidic Image Cytometry. In: Palmer, E. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 706. Humana Press. https://doi.org/10.1007/978-1-61737-970-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-970-3_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-969-7

  • Online ISBN: 978-1-61737-970-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics