Skip to main content

Bioreactor Cultivation of Functional Bone Grafts

  • Protocol
  • First Online:
Mesenchymal Stem Cell Assays and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 698))

Abstract

The clinical demand for functional tissue-engineered bone grafts to regenerate bone defects resulting from trauma and surgical resection of congenital anomalies remains very high. One approach involves the use of human mesenchymal stem cells (hMSCs) that are seeded into biomaterial scaffolds and are induced to generate new bone tissue by osteo-inductive cues. The size of tissue constructs that can be cultured under conventional static conditions is seriously limited by diffusional constraints of nutrient supply resulting from high metabolic activity of bone cells. To cultivate bone constructs of clinically-relevant sizes, it is necessary to utilize perfusion bioreactors, which provides convective transfer of nutrients, and most critically oxygen, to the cells throughout the construct volume. This chapter describes a method for engineering 4-mm thick cylindrical bone grafts using hMSCs (isolated from bone marrow aspirates), biomaterial scaffolds (made of fully decellularized bovine trabecular bone), and a perfusion bioreactor (designed for simultaneous cultivation of six constructs for up to 5 weeks). This approach results in the formation of completely viable, biological bone grafts of clinically relevant sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., and Freed, L. E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage, Biotechnol. Bioeng. 63, 197–205.

    Article  PubMed  CAS  Google Scholar 

  2. Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., and Vunjak-Novakovic, G. (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue, Biotechnol. Bioeng. 93, 332–343.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, I., Wendt, D., and Heberer, M. (2004) The role of bioreactors in tissue engineering, Trends Biotechnol. 22, 80–86.

    Article  PubMed  CAS  Google Scholar 

  4. Bancroft, G. N., Sikavitsas, V. I., and Mikos, A. G. (2003) Design of a flow perfusion bioreactor system for bone tissue-engineering applications, Tissue Eng. 9, 549–554.

    Article  PubMed  CAS  Google Scholar 

  5. Botchwey, E. A., Pollack, S. R., Levine, E. M., and Laurencin, C. T. (2001) Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system, J. Biomed. Mater. Res. 55, 242–253.

    Article  PubMed  CAS  Google Scholar 

  6. Glowacki, J., Mizuno, S., and Greenberger, J. S. (1998) Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture, Cell Transplant. 7, 319–326.

    Article  PubMed  CAS  Google Scholar 

  7. Grayson, W. L., Bhumiratana, S., Cannizzaro, C., Chao, G. P., Lennon, D., Caplan, A. I., and Vunjak-Novakovic, G. (2008) Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone, Tissue Eng. A 14, 1809–1820.

    Article  CAS  Google Scholar 

  8. Bhumiratana, S., Cannizzaro, C., Wan, L. Q., Grayson, W. L., Kaplan, D. L., Vunjak-Novakovic, G. (2009) Enhancement of mechanical support and biocompatibility of mineralized silk scaffolds with high-throughput fabrication, in Orthopaedic Research Society, Las Vegas.

    Google Scholar 

  9. Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., Kaplan, D., Langer, R., and Vunjak-Novakovic, G. (2004) Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow, Ann. Biomed. Eng. 32, 112–122.

    Article  PubMed  Google Scholar 

  10. Meinel, L., Karageorgiou, V., Hofmann, S., Fajardo, R., Snyder, B., Li, C. M., Zichner, L., Langer, R., Vunjak-Novakovic, G., and Kaplan, D. L. (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds, J. Biomed. Mater. Res. A 71A, 25–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Vunjak-Novakovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grayson, W.L., Bhumiratana, S., Cannizzaro, C., Vunjak-Novakovic, G. (2011). Bioreactor Cultivation of Functional Bone Grafts. In: Vemuri, M., Chase, L., Rao, M. (eds) Mesenchymal Stem Cell Assays and Applications. Methods in Molecular Biology, vol 698. Humana Press. https://doi.org/10.1007/978-1-60761-999-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-999-4_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-998-7

  • Online ISBN: 978-1-60761-999-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics