Skip to main content

Three-Dimensional Structures of DNA-Bound Transcriptional Regulators

  • Protocol
  • First Online:
Computational Biology of Transcription Factor Binding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 674))

Abstract

Our understanding of the detailed mechanisms of specific promoter/enhancer DNA-binding site recognition by transcriptional regulatory factors is primarily based on three-dimensional structural studies using the methods of X-ray crystallography and NMR. Vast amount of accumulated experimental data have revealed the basic principles of protein–DNA complex formation paving the way for better modeling and prediction of DNA-binding properties of transcription factors. In this review, our intent is to provide a general overview of the three-dimensional structures of DNA-bound transcriptional regulators starting from the basic principles of specific DNA recognition and ending with high-order multiprotein–DNA complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman, N.C., Rosenberg, J.M., and Rich, A. (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Nat Acad Sci USA 73, 804–808.

    Article  PubMed  CAS  Google Scholar 

  2. Watkins, D., Hsiao, C., Woods, K.K. et al. (2008) P22 c2 repressor-operator complex: mechanisms of direct and indirect readout. Biochemistry 47, 2325–2338.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang, Y., Xi, Z., Hegde, R.S. et al. (2004) Predicting indirect readout effects in protein-DNA interactions. Proc Natl Acad Sci USA 101, 8337–8341.

    Article  PubMed  CAS  Google Scholar 

  4. Pauling, L., and Corey, R.B. (1951) Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc Natl Acad Sci USA 37, 235–240.

    Article  PubMed  CAS  Google Scholar 

  5. Watson, J.D., and Crick, F.H. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738.

    Article  PubMed  CAS  Google Scholar 

  6. Jayaram, B., and Jain, T. (2004) The role of water in protein-DNA recognition. Annu Rev Biophys Biomol Struct 33, 343–361.

    Article  PubMed  CAS  Google Scholar 

  7. Luscombe, N.M., Laskowski, R.A., and Thornton, J.M. (2001) Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res 29, 2860–2874.

    Article  PubMed  CAS  Google Scholar 

  8. Schwabe, J.W. (1997) The role of water in protein-DNA interactions. Curr Opin Struct Biol 7, 126–134.

    Article  PubMed  CAS  Google Scholar 

  9. Janin, J. (1991) Wet and dry interfaces: the role of solvent in protein-protein and protein-DNA recognition. Structure 7, R277–R279.

    Article  Google Scholar 

  10. Woda, J., Schneider, B., Patel, K. et al. (1998) An analysis of the relationship between hydration and protein-DNA interactions. Biophys J 75, 2170–2177.

    Article  PubMed  CAS  Google Scholar 

  11. Nikolov, D.B., Chen, H., Halay, E.D. et al. (1996) Crystal structure of a human TATA box-binding protein/TATA element complex. Proc Natl Acad Sci USA 93, 4862–4867.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, Y., Geiger, J.H., Hahn, S. et al. (1993) Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520.

    Article  PubMed  CAS  Google Scholar 

  13. Korolev, N., Vorontsova, O.V., and Nordenskiold, L. (2007) Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol 95, 23–49.

    Article  PubMed  CAS  Google Scholar 

  14. Somers, W.S., and Phillips, S.E. (1992) Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by beta-strands. Nature 359, 387–393.

    Article  PubMed  CAS  Google Scholar 

  15. Tahirov, T.H., Sato, K., Ichikawa-Iwata, E. et al. (2002) Mechanism of c-Myb-C/EBP beta cooperation from separated sites on a promoter. Cell 108, 57–70.

    Article  PubMed  CAS  Google Scholar 

  16. Fujii, Y., Shimizu, T., Kusumoto, M. et al. (1999) Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences. EMBO J 18, 5028–5041.

    Article  PubMed  CAS  Google Scholar 

  17. Romanuka, J., Folkers, G.E., Biris, N. et al. (2009) Specificity and affinity of Lac repressor for the auxiliary operators O2 and O3 are explained by the structures of their protein-DNA complexes. J Mol Biol 390, 478–489.

    Article  PubMed  CAS  Google Scholar 

  18. Schreiter, E.R., Wang, S.C., Zamble, D.B. et al. (2006) NikR-operator complex structure and the mechanism of repressor activation by metal ions. Proc Natl Acad Sci USA 103, 13676–13681.

    Article  PubMed  CAS  Google Scholar 

  19. Allen, M.D., Yamasaki, K., Ohme-Takagi, M. et al. (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17, 5484–5496.

    Article  PubMed  CAS  Google Scholar 

  20. Bleichenbacher, M., Tan, S., and Richmond, T.J. (2003) Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol 332, 783–793.

    Article  PubMed  CAS  Google Scholar 

  21. Garvie, C.W., and Wolberger, C. (2001) Recognition of specific DNA sequences. Mol Cell 8, 937–946.

    Article  PubMed  CAS  Google Scholar 

  22. Ho, W.C., Fitzgerald, M.X., and Marmorstein, R. (2006) Structure of the p53 core domain dimer bound to DNA. J Biol Chem 281, 20494–20502.

    Article  PubMed  CAS  Google Scholar 

  23. Tahirov, T.H., Inoue-Bungo, T., Morii, H. et al. (2001) Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFb. Cell 104, 755–767.

    Article  PubMed  CAS  Google Scholar 

  24. Harrison, S.C., and Aggarwal, A.K. (1990) DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem 59, 933–969.

    Article  PubMed  CAS  Google Scholar 

  25. Pabo, C.O., and Sauer, R.T. (1984) Protein-DNA recognition. Annu Rev Biochem 53, 293–321.

    Article  PubMed  CAS  Google Scholar 

  26. Harrison, S.C. (1991) A structural taxonomy of DNA-binding domains. Nature 353, 715–719.

    Article  PubMed  CAS  Google Scholar 

  27. Struhl, K. (1989) Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem Sci 14, 137–140.

    Article  PubMed  CAS  Google Scholar 

  28. Wintjens, R., and Rooman, M. (1996) Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262, 294–313.

    Article  PubMed  CAS  Google Scholar 

  29. Brennan, R.G., and Matthews, B.W. (1989) The helix-turn-helix DNA binding motif. J Biol Chem 264, 1903–1906.

    PubMed  CAS  Google Scholar 

  30. Brennan, R.G. (1993) The winged-helix DNA-binding motif: another helix-turn-helix takeoff. Cell 74, 773–776.

    Article  PubMed  CAS  Google Scholar 

  31. Lai, E., Clark, K.L., Burley, S.K. et al. (1993) Hepatocyte nuclear factor 3/fork head or “winged helix” proteins: a family of transcription factors of diverse biologic function. Proc Natl Acad Sci USA 90, 10421–10423.

    Article  PubMed  CAS  Google Scholar 

  32. Clubb, R.T., Omichinski, J.G., Savilahti, H. et al. (1994) A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase. Structure 2, 1041–1048.

    Article  PubMed  CAS  Google Scholar 

  33. Miller, J., McLachlan, A.D., and Klug, A. (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4, 1609–1614.

    PubMed  CAS  Google Scholar 

  34. Brown, R.S., Sander, C., and Argos, P. (1985) The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett 186, 271–274.

    Article  PubMed  CAS  Google Scholar 

  35. Freedman, L.P., Luisi, B.F., Korszun, Z.R. et al. (1988) The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature 334, 543–546.

    Article  PubMed  CAS  Google Scholar 

  36. Pan, T., and Coleman, J.E. (1990) GAL4 transcription factor is not a “zinc finger” but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci USA 87, 2077–2081.

    Article  PubMed  CAS  Google Scholar 

  37. Luscombe, N.M., Austin, S.E., Berman, H.M. et al. (2000) An overview of the structures of protein-DNA complexes. Genome Biol 1, REVIEWS001.

    Article  PubMed  CAS  Google Scholar 

  38. Ferre-D’Amare, A.R., Prendergast, G.C., Ziff, E.B. et al. (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45.

    Article  PubMed  Google Scholar 

  39. Raumann, B.E., Rould, M.A., Pabo, C.O. et al. (1994) DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature 367, 754–757.

    Article  PubMed  CAS  Google Scholar 

  40. Longo, A., Guanga, G.P., and Rose, R.B. (2007) Structural basis for induced fit mechanisms in DNA recognition by the Pdx1 homeodomain. Biochemistry 46, 2948–2957.

    Article  PubMed  CAS  Google Scholar 

  41. Elrod-Erickson, M., Rould, M.A., Nekludova, L. et al. (1996) Zif268 protein-DNA complex refined at 1.6 Å: a model system for understanding zinc finger-DNA interactions. Structure 4, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  42. Ghosh, G., van Duyne, G., Ghosh, S. et al. (1995) Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373, 303–310.

    Article  PubMed  CAS  Google Scholar 

  43. Chen, Y.Q., Ghosh, S., and Ghosh, G. (1998) A novel DNA recognition mode by the NF-kappa B p65 homodimer. Nat Struct Biol 5, 67–73.

    Article  PubMed  Google Scholar 

  44. Chen, F.E., Huang, D.B., Chen, Y.Q. et al. (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391, 410–413.

    Article  PubMed  CAS  Google Scholar 

  45. Marmorstein, R., and Fitzgerald, M.X. (2003) Modulation of DNA-binding domains for sequence-specific DNA recognition. Gene 304, 1–12.

    Article  PubMed  CAS  Google Scholar 

  46. Tjian, R., and Maniatis, T. (1994) Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5–8.

    Article  PubMed  CAS  Google Scholar 

  47. Ogata, K., Sato, K., and Tahirov, T.H. (2003) Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Curr Opin Struct Biol 13, 40–48.

    Article  PubMed  CAS  Google Scholar 

  48. Batchelor, A.H., Piper, D.E., de la Brousse, F.C. et al. (1998) The structure of GABPalpha/beta: an ETS domain- ankyrin repeat heterodimer bound to DNA. Science 279, 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  49. Warren, A.J., Bravo, J., Williams, R.L. et al. (2000) Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. Embo J 19, 3004–3015.

    Article  PubMed  CAS  Google Scholar 

  50. Bartfeld, D., Shimon, L., Couture, G.C. et al. (2002) DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure 10, 1395–1407.

    Article  PubMed  CAS  Google Scholar 

  51. Garvie, C.W., Hagman, J., and Wolberger, C. (2001) Structural studies of Ets-1/Pax5 complex formation on DNA. Mol Cell 8, 1267–1276.

    Article  PubMed  CAS  Google Scholar 

  52. Tan, S., and Richmond, T.J. (1998) Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex. Nature 391, 660–666.

    Article  PubMed  CAS  Google Scholar 

  53. Chen, L., Glover, J.N., Hogan, P.G. et al. (1998) Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48.

    Article  PubMed  CAS  Google Scholar 

  54. Panne, D., Maniatis, T., and Harrison, S.C. (2007) An atomic model of the interferon-beta enhanceosome. Cell 129, 1111–1123.

    Article  PubMed  CAS  Google Scholar 

  55. Panne, D., Maniatis, T., and Harrison, S.C. (2004) Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-beta enhancer. Embo J 23, 4384–4393.

    Article  PubMed  CAS  Google Scholar 

  56. Beamer, L.J., and Pabo, C.O. (1992) Refined 1.8 Å crystal structure of the lambda repressor-operator complex. J Mol Biol 227, 177–196.

    Article  PubMed  CAS  Google Scholar 

  57. Brent, M.M., Anand, R., and Marmorstein, R. (2008) Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16, 1407–1416.

    Article  PubMed  CAS  Google Scholar 

  58. Hong, M., Fitzgerald, M.X., Harper, S. et al. (2008) Structural basis for dimerization in DNA recognition by Gal4. Structure 16, 1019–1026.

    Article  PubMed  CAS  Google Scholar 

  59. Parraga, A., Bellsolell, L., Ferre-D’Amare, A.R. et al. (1998) Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 Å resolution. Structure 6, 661–672.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir H. Tahirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shrivastava, T., Tahirov, T.H. (2010). Three-Dimensional Structures of DNA-Bound Transcriptional Regulators. In: Ladunga, I. (eds) Computational Biology of Transcription Factor Binding. Methods in Molecular Biology, vol 674. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-854-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-854-6_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-853-9

  • Online ISBN: 978-1-60761-854-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics