Skip to main content

Practical Computational Methods for Regulatory Genomics: A cisGRN-Lexicon and cisGRN-Browser for Gene Regulatory Networks

  • Protocol
  • First Online:
Computational Biology of Transcription Factor Binding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 674))

Abstract

The CYRENE Project focuses on the study of cis-regulatory genomics and gene regulatory networks (GRN) and has three components: a cisGRN-Lexicon, a cisGRN-Browser, and the Virtual Sea Urchin software system. The project has been done in collaboration with Eric Davidson and is deeply inspired by his experimental work in genomic regulatory systems and gene regulatory networks. The current CYRENE cisGRN-Lexicon contains the regulatory architecture of 200 transcription factors encoding genes and 100 other regulatory genes in eight species: human, mouse, fruit fly, sea urchin, nematode, rat, chicken, and zebrafish, with higher priority on the first five species. The only regulatory genes included in the cisGRN-Lexicon (CYRENE genes) are those whose regulatory architecture is validated by what we call the Davidson Criterion: they contain functionally authenticated sites by site-specific mutagenesis, conducted in vivo, and followed by gene transfer and functional test. This is recognized as the most stringent experimental validation criterion to date for such a genomic regulatory architecture. The CYRENE cisGRN-Browser is a full genome browser tailored for cis-regulatory annotation and investigation. It began as a branch of the Celera Genome Browser (available as open source at http://sourceforge.net/projects/celeragb/) and has been transformed to a genome browser fully devoted to regulatory genomics. Its access paradigm for genomic data is zoom-to-the-DNA-base in real time. A more recent component of the CYRENE project is the Virtual Sea Urchin system (VSU), an interactive visualization tool that provides a four-dimensional (spatial and temporal) map of the gene regulatory networks of the sea urchin embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson, E.H. (2001) Genomic regulatory systems: In Devel and evol, Academic Press, San Diego, CA.

    Google Scholar 

  2. Davidson, E.H., and Erwin, D. (2006) Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800.

    Article  PubMed  CAS  Google Scholar 

  3. Davidson, E.H. (1968) Gene activity in early development. Academic Press, New York, NY.

    Google Scholar 

  4. Sea Urchin Genome Consortium. (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314, 941–952.

    Article  Google Scholar 

  5. Samanta, M.P., Tongprasit, W., Istrail, S. et al. (2006) The transcriptome of the sea urchin embryo. Science 314, 960–962.

    Article  PubMed  CAS  Google Scholar 

  6. Erwin, D.H., and Davidson, E.H. (2009) The evolution of hierarchical gene regulatory networks. Nature Rev Gen 10, 141–148.

    Article  CAS  Google Scholar 

  7. Davidson, E.H., Rast, J.P., Oliveri, P. et al. (2002) A genomic regulatory network for development. Science 295, 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  8. Britten, R.J., and Davidson, E.H. (1969) Gene regulation for higher cells: a theory. Science 165, 349–357.

    Article  PubMed  CAS  Google Scholar 

  9. Ransick, A., and Davidson, E. (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297, 587–602.

    Article  PubMed  CAS  Google Scholar 

  10. Oliveri, P., Tu, Q., and Davidson, E.H. (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci USA 105, 5955–5962.

    Article  PubMed  CAS  Google Scholar 

  11. Yuh, C.H., and Davidson, E.H. (1996) Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. Development, 122, 1069–1082.

    PubMed  CAS  Google Scholar 

  12. Yuh, C.H., Bolouri, H., and Davidson, E.H. (1998) Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902.

    Article  PubMed  CAS  Google Scholar 

  13. Yuh, C.H., Dorman, E.R., Howard, M.L. et al. (2004) An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. Dev Biol 269, 536–551.

    Article  PubMed  CAS  Google Scholar 

  14. Istrail, S., De-Leon, S.-T., and Davidson, E. (2007) The regulatory genome and the computer. Dev Biol 310, 187–195.

    Article  PubMed  CAS  Google Scholar 

  15. Istrail, S., and Davidson, E. (2005) Logic functions of the genomic cis-regulatory code 2005. Proc Natl Acad Sci USA 102, 4954–4959.

    Article  PubMed  CAS  Google Scholar 

  16. Levine, M., and Davidson, E.H. (2005) Gene regulatory networks for development. Proc Natl Acad Sci USA 102, 4936–4942.

    Article  PubMed  CAS  Google Scholar 

  17. Davidson, E.H. (2006) The regulatory genome: gene regulatory networks in development and. Academic Press, San Diego, CA.

    Google Scholar 

  18. Tarpine, R., and Istrail, S. (2009) On the concept of Cis-regulatory information: from sequence motifs to logic functions. Algorithmic Bioprocesses In (Condon, A., Harel, D., Kok, J.N., Salomaa, A., and Winfree, E. Eds.) pp. 731–742 Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  19. Longabaugh, W.J.R., Davidson, E.H., and Bolouri, H. (2005) Computational representation of developmental genetic regulatory networks. Dev Biol 283, 1–16.

    Article  PubMed  CAS  Google Scholar 

  20. Longabaugh, W.J.R., Davidson, E.H., and Bolouri, H. (2009) Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochem Biophys Acta 1789, 363–374.

    Article  PubMed  CAS  Google Scholar 

  21. Stormo, G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics 16, 16–23.

    Article  PubMed  CAS  Google Scholar 

  22. Wasserman, W.W., and Sandelin, A. (2004) Applied bioinformatics for the identification of regulatory elements. Nature Rev Gen 5, 276–287.

    Article  CAS  Google Scholar 

  23. Sandelin, A. (2004) In silico prediction of cis-regulatory elements. Karolinska Institutet. Stockholm, Sweden, 4–130.

    Google Scholar 

  24. Tompa, M., Li, N., Bailey, T.L. et al. (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnol 23, 137–144.

    Article  CAS  Google Scholar 

  25. Hannenhalli, S., and Levy, S. (2001) Promoter prediction in the human genome. Bioinformatics 17, S90–S96.

    Article  PubMed  Google Scholar 

  26. Hannenhalli, S., and Levy, S. (2002) Predicting transcription factor synergism. Nucleic Acids Res 30, 1–8.

    Article  Google Scholar 

  27. Hannenhalli, S., Putt, M.E., Gilmore, J.M. et al. (2006) Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation J Am Heart Assoc 114, 1269–1276.

    CAS  Google Scholar 

  28. Singh, L.N., Wang, L.S., and Hannenhalli, S. (2007) TREMOR—a tool for retrieving transcriptional modules by incorporating motif covariance. Nucleic Acids Res 35, 7360–7371.

    Article  PubMed  CAS  Google Scholar 

  29. Markstein, M., Markstein, P., Markstein, V. et al. (2002) Genome-wide analysis of clustered dorsal binding sites identifies putative target genes in the Drosophila embryo. Dev Biol 99, 763–768.

    CAS  Google Scholar 

  30. Linhart, C., Halperin, Y., and Shamir, R. (2008) Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome Res 18, 1180–1189.

    Article  PubMed  CAS  Google Scholar 

  31. Tompa, M. (1999) An exact method for finding short motifs in sequences, with application to the ribosome binding site problem. 7th International Conference Intelligent Systems for Molecular Biology, 262–271.

    Google Scholar 

  32. Sinha, S., and Tompa, M. (2003) Performance comparison of algorithms for finding transcription factor binding sites. Proceedings of the 3rd IEEE Symposium on Bioinformatics and Bioengineering, 213.

    Google Scholar 

  33. Blanchette, M., Schwikowski, B., and Tompa, M. (2002) Algorithms for phylogenetic footprinting. J Comput Biol 9, 211–223.

    Article  PubMed  CAS  Google Scholar 

  34. Wasserman, W.W., and Fickett, J.W. (1998) Identification of regulatory regions which confer muscle-specific gene expression. J Mol Biol 278, 167–181.

    Article  PubMed  CAS  Google Scholar 

  35. Benos, P.V., Bulyk, M.L., and Stormo, G.D. (2002) Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res 30, 4442–4451.

    Article  PubMed  CAS  Google Scholar 

  36. Keich, U., and Pevzner, P.A. (2002) Subtle motifs: defining the limits of motif finding algorithms. Bioinformatics 18, 1382–1390.

    Article  PubMed  CAS  Google Scholar 

  37. Ng, P., Nagarajan, N., Jones, N. et al. (2006) Apples to apples: improving the performance motif finders and their significance analysis in the Twilight Zone. Bioinformatics 22, e393–e401.

    Article  PubMed  CAS  Google Scholar 

  38. Badis, G., Berger, M., Philippakis, A. et al. (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723.

    Article  PubMed  CAS  Google Scholar 

  39. Berger, M., Badis, G., Gehrke, A. et al. (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133, 1266–1276.

    Article  PubMed  CAS  Google Scholar 

  40. Noyes, M.B., Christensen, R.G., Wakabayashi, A. et al. (2008) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133, 1277–1289.

    Article  PubMed  CAS  Google Scholar 

  41. Cameron, R.A., Rast, J.P., and Brown, C.T. (2004) Genomic resources for the study of sea urchin development. Methods Cell Biol 74, 733–757.

    Article  PubMed  CAS  Google Scholar 

  42. He, X., Ling, X., and Sinha, S. (2009) Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution. PLoS Comput Biol 5, e100299.

    Google Scholar 

  43. Li, N., and Tompa, M. (2006) Analysis of computational approaches for motif discovery. Algorithms Mol Biol 1, 1–8.

    Article  Google Scholar 

  44. Li, X., Zhong, S., and Wong, W.H. (2005) Reliable prediction of transcription factor binding sites by phylogenetic verification. Proc Natl Acad Sci USA 102, 16945–16950.

    Article  PubMed  CAS  Google Scholar 

  45. Papatsenko, D., and Levine, M. (2005) Quantitative analysis of binding motifs mediating diverse spatial readouts of the dorsal gradient in the Drosophila embryo. Proc Natl Acad Sci USA 102, 4966–4971.

    Article  PubMed  CAS  Google Scholar 

  46. Pilpel, Y., Sudarsana, P., and Church, G.M. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet 29, 153–159.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, Z., Pilpel, Y., and Churge, G.M. (2002) Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. J Mol Biol 318, 71–81.

    Article  PubMed  CAS  Google Scholar 

  48. Howard-Ashby, M., Materna, S.C., Brown, C.T. et al. (2006) Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 300,74–89.

    Article  PubMed  CAS  Google Scholar 

  49. Oliveri, P., Carrick, D.M., and Davidson, E.H. (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246, 209–228.

    Article  PubMed  CAS  Google Scholar 

  50. Calestani, C., Rast, J.P., and Davidson, E.H. (2003) Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130, 4587–4596.

    Article  PubMed  CAS  Google Scholar 

  51. Imai, K.S., Levine, M., Satoh, N. et al. (2006) Regulatory blueprint for a chordate embryo. Science 312, 1183–1187.

    Article  PubMed  CAS  Google Scholar 

  52. Ransick, A., Rast, J.P., Minokawa, T. et al. (2002) New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. Dev Biol 246, 132–147.

    Article  PubMed  CAS  Google Scholar 

  53. Stathopoulos, A., Van Drenth, M., Erives, A. et al. (2002) Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111, 687–701.

    Article  PubMed  CAS  Google Scholar 

  54. Revilla-i-Domingo, R., Minokawa, T., and Davidson, E.H. (2004) R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev Biol 274, 438–451.

    Article  PubMed  CAS  Google Scholar 

  55. Lickert, H., and Kemler, R. (2002) Functional analysis of cis-regulatory elements controlling initiation and maintenance of early Cdx1 gene expression in the mouse. Dev Dyn 225, 216–220.

    Article  PubMed  CAS  Google Scholar 

  56. Megason, S., and Fraser, S. (2003) Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech Dev 120, 1407–1420.

    Article  PubMed  CAS  Google Scholar 

  57. Megason, S., and Fraser, S. (2007) Imaging in systems biology. Cell 130, 784–795.

    Article  PubMed  CAS  Google Scholar 

  58. Turner, R., Chaturvedi, K., Edwards, N. et al. (2001) Visualization challenges for a new cyberpharmaceutical computing paradigm, Proceedings of the Symposium on Large-Data Visualization and Graphics, San Diego, CA.

    Google Scholar 

  59. Gray, S., Szymanski, P., and Levine, M. (1994) Short-range repression permits multiple enhancers to function autonomously within a complex promoter. Genes Dev 8(15), 1829–1838.

    Article  PubMed  CAS  Google Scholar 

  60. Courey, A., and Jia, S. (2001) Transcriptional repression: the long and the short of it. Genes Dev 15, 2786–2796.

    PubMed  CAS  Google Scholar 

  61. Nakao, T., and Ishizawa, A. (1994) Development of the spinal nerves in the mouse with special reference to innervation of the axial musculature. Anat Embryol 189, 115–138.

    Article  PubMed  CAS  Google Scholar 

  62. Latchman, D. (2008) Eukaryotic transcription factors. Fifth Edition, Academic Press, London.

    Google Scholar 

  63. Barolo, S., and Posakony, J. (2002) Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 16 , 1167–1181.

    Article  PubMed  CAS  Google Scholar 

  64. Zeller, R., Griffith, J., Moore, J. et al. (1995) A multimerizing transcription factor of sea urchin embryos capable of looping DNA. Proc Natl Acad Sci USA 92, 2989–2993.

    Article  PubMed  CAS  Google Scholar 

  65. Smith, J., and Davidson, E. (2008) A new method, using cis-regulatory control, for blocking embryonic gene expression. Dev Biol 318, 360–365.

    Article  PubMed  CAS  Google Scholar 

  66. West, A., Gaszner, M., and Felsenfeld, G. (2002) Insulators: many functions, many mechanisms. Genes Dev 16, 271–288.

    Article  PubMed  Google Scholar 

  67. Inagaki, N., Maekawa, T., Sudo, T. et al. (1992) c-Jun represses the human insulin promoter activity that depends on multiple cAMP response elements. Proc Natl Acad Sci 89, 1045–1049.

    Article  PubMed  CAS  Google Scholar 

  68. Matys, V., Kel-Margoulis, O., Fricke, E. et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34, D108–D110.

    Article  PubMed  CAS  Google Scholar 

  69. Ashburner, M., Ball, C., Blake, J. et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25–29.

    Article  PubMed  CAS  Google Scholar 

  70. Mi, H., Guo, N., Kejariwal, A. et al. (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35, D247–D252.

    Article  PubMed  CAS  Google Scholar 

  71. Gottschalk, L., Giannola, D., and Emerson, S. (1993) Molecular regulation of the human IL-3 gene: inducible T cell-restricted expression requires intact AP-1 and Elf-1 nuclear protein binding sites. J Exp Med 178, 1681–1692.

    Article  PubMed  CAS  Google Scholar 

  72. Regl, G., Kasper, M., Schnidar, H. et al. (2004) Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64, 7724–7731.

    Article  PubMed  CAS  Google Scholar 

  73. Wheeler, M., Snyder, E., Patterson, M. et al. (1999) An E-box within the MHC IIB gene is bound by MyoD and is required for gene expression in fast muscle. Am J Physiol 276, C1069–C1078.

    PubMed  CAS  Google Scholar 

  74. Sekido, R., Murai, K., Funahashi, J. et al. (1994) The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol Cell Bio 14, 5692–5700.

    Article  CAS  Google Scholar 

  75. Castro, B., Barolo, S., Bailey, A. et al. (2005) Lateral inhibition in proneural clusters: cis-regulatory logic and default repression by suppressor of hairless. Development 132, 3333–3344.

    Article  PubMed  CAS  Google Scholar 

  76. Penkov, D., Tanaka, S., Di Rocco, G. et al. (2000) Cooperative interactions between PBX, PREP, and HOX proteins modulate the activity of the alpha 2(V) collagen (COL5A2) promoter. J Biol Chem 275, 16681–16689.

    Article  PubMed  CAS  Google Scholar 

  77. Zelko, I., Mueller, M., and Folz, R. (2008) Transcription factors sp1 and sp3 regulate expression of human extracellular superoxide dismutase in lung fibroblasts. Am J Respir Cell Mol Biol 39, 243–251.

    Article  PubMed  CAS  Google Scholar 

  78. Murphy, A., Lee, T., Andrews, C. et al. (1995) The breathless FGF receptor homolog, a downstream target of Drosophila C/EBP in the developmental control of cell migration. Development 121, 2255–2263.

    PubMed  CAS  Google Scholar 

  79. Ohshiro, T., and Saigo, K. (1997) Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea. Development 124, 3975–3986.

    PubMed  CAS  Google Scholar 

  80. Christensen, M., Zhou, W., Qing, H. et al. (2004). Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 24, 865–874.

    Article  PubMed  CAS  Google Scholar 

  81. Pan, D., Huang, J., and Courey, A. (1991) Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. Genes Dev 5, 1892–1901.

    Article  PubMed  CAS  Google Scholar 

  82. Thisse, C., Perrin-Schmitt, F., Stoetzel, C. et al. (1991) Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell 65, 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  83. Jiang, J., Kosman, D., Ip, Y. et al. (1991) The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev 5, 1881–1891.

    Article  PubMed  CAS  Google Scholar 

  84. Akimaru, H., Hou, D., and Ishii, S. (1997) Drosophila CBP is required for dorsal-dependent twist gene expression. Nature Genet 17, 211–214.

    Article  PubMed  CAS  Google Scholar 

  85. Doerksen, L., Bhattacharya, A., Kannan, P. et al. (1996) Functional interaction between a RARE and an AP-2 binding site in the regulation of the human HOX A4 gene promoter. Nucleic Acids Res 24, 2849–2856.

    Article  PubMed  CAS  Google Scholar 

  86. Sasaki, H., Hui, C., Nakafuku, M. et al. (1997) A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322.

    PubMed  CAS  Google Scholar 

  87. Yoon, J., Kita, Y., Frank, D. et al. (2002) Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277, 5548–5555.

    Article  PubMed  CAS  Google Scholar 

  88. Sokol, N., and Ambros, V. (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19, 2343–2354.

    Article  PubMed  CAS  Google Scholar 

  89. Ho, I., Hodge, M., Rooney, J. et al. (1996) The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983.

    Article  PubMed  CAS  Google Scholar 

  90. Kajihara, M., Sone, H., Amemiya, M. et al. (2003) Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter. Biochem Biophys Res Commun 312, 831–842.

    Article  PubMed  CAS  Google Scholar 

  91. Matsuo, I., and Yasuda, K. (1992) The cooperative interaction between two motifs of an enhancer element of the chicken alpha A-crystallin gene, alpha CE1 and alpha CE2, confers lens-specific expression. Nucleic Acids Res 20, 3701–3712.

    Article  PubMed  CAS  Google Scholar 

  92. Belkin, D., Allen, D., and Leinwand, L. (2006) MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes. Dev Biol 294, 541–553.

    Article  Google Scholar 

  93. Wilson, D., Charoensawan, V., Kummerfeld, S., et al. (2008) DBD—taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res 36, D88–D92.

    Article  PubMed  CAS  Google Scholar 

  94. Haerty, W., Artieri, C., Khezri, N. et al. (2008) Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution. BMC Genomics 9, 399.

    Article  PubMed  Google Scholar 

  95. Bult, C., Eppig, J., Kadin, J. et al. (2008) The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res 36, D724–D728.

    Article  PubMed  CAS  Google Scholar 

  96. Chen, F., Mackey, A., Stoeckert, C. et al. (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34, D363–D368.

    Article  PubMed  CAS  Google Scholar 

  97. Berglund, A.-C., Sjölund, E., Ostlund, G. et al. (2008) InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res 36(database issue), D263–D266.

    PubMed  CAS  Google Scholar 

  98. Delporte, F., Pasque, V., Devos, N. et al. (2008) Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC Dev Biol 8, 53.

    Article  PubMed  Google Scholar 

  99. Warren, D., Simpkins, C., Cooper, M. et al. (2005) Modulating alloimmune responses with plasmapheresis and IVIG. Curr Drug Targets Cardiovasc Haematol Disord 5, 215–222.

    Article  PubMed  CAS  Google Scholar 

  100. Annicotte, J.-S., Fayard, E., Swift, G. et al. (2003) Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol 23, 6713–6724.

    Article  PubMed  CAS  Google Scholar 

  101. Shen, J.-C., and Ingraham, H. (2002) Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol (Baltimore, MD) 16, 529–540.

    Article  CAS  Google Scholar 

  102. Clark, A., Wilson, M., London, N. et al. (1995) Identification and characterization of a functional retinoic acid/thyroid hormone-response element upstream of the human insulin gene enhancer. Biochem J 309, 863–870.

    PubMed  CAS  Google Scholar 

  103. van Noort, M., van de Wetering, M., and Clevers, H. (2002) Identification of two novel regulated serines in the N terminus of beta-catenin. Exp Cell Res 276, 264–72.

    Google Scholar 

  104. Sharma, M., Fopma, A., Brantley, et al. (2004) Coexpression of Cux-1 and notch signaling pathway components during kidney development. Dev Dyn 231(4), 828–838.

    Google Scholar 

  105. López-Ríos, J., Tessmar, K., Loosli F. et al. (2003) Six3 and Six6 is moduated by members of the groucho family. Development 130, 185–195.

    Google Scholar 

Download references

Acknowledgments

The support of the National Science Foundation under grant DBI 0645955 is acknowledged with gratitude. We would also like to acknowledge the tremendous impact on this work of our collaborator, Eric H. Davidson of the California Institute of Technology, who has guided every step of our efforts. This work would not have been possible without the contributions of three generations of annotators, most notably Tim Johnstone, Jake Halpert, and David Moskowitz. (The first generation was David Moskowitz, Rohan Madamsetti, and Sanjay Trehan; the second generation was Tamar Melman, Mark Grabiner, and Kyle Schutter; the third generation is Tim Johnstone, Jake Halpert, Mei Cao, Kenneth Estrellas, Nicole Noronha, and Daniel Yang.) We would also like to thank Andy Ransick, Andy Cameron and Russell Turner for many discussions and valuable suggestions. Last but not least, many thanks go to Erin Klopfenstein for her outstanding work and many valuable contributions to the CYRENE Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Istrail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Istrail, S., Tarpine, R., Schutter, K., Aguiar, D. (2010). Practical Computational Methods for Regulatory Genomics: A cisGRN-Lexicon and cisGRN-Browser for Gene Regulatory Networks. In: Ladunga, I. (eds) Computational Biology of Transcription Factor Binding. Methods in Molecular Biology, vol 674. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-854-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-854-6_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-853-9

  • Online ISBN: 978-1-60761-854-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics