Skip to main content

Inferring Protein–DNA Interaction Parameters from SELEX Experiments

  • Protocol
  • First Online:
Computational Biology of Transcription Factor Binding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 674))

Abstract

Systematic Evolution of Ligands by EXponential enrichment (SELEX) is an experimental procedure that allows extraction, from an initially random pool of oligonucleotides, of the oligomers with a high binding affinity for a given molecular target. The highest affinity binding sequences isolated through SELEX can have numerous research, diagnostic, and therapeutic applications. Recently, important new modifications of the SELEX protocol have been proposed. In particular, a suitably modified SELEX experiment, together with an appropriate computational procedure, allows inference of protein–DNA interaction parameters with up to now unprecedented accuracy. Such inference is possible even when there is no a priori information on transcription factor binding specificity, which allows accurate predictions of binding sites for any transcription factor of interest. In this chapter we discuss how to accurately determine protein–DNA interaction parameters from SELEX experiments. The chapter addresses experimental and computational procedure needed to generate and analyze appropriate data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One should observe that there is one parameter for each possible mismatch from a reference sequence.

References

  1. Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  2. Oliphant, A.R., Brandl, C.J., and Struhl, K. (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9, 2944–2949.

    PubMed  CAS  Google Scholar 

  3. Ellington, A.D., and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  4. Djordjevic, M. (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol Eng 24, 179–189.

    Article  PubMed  CAS  Google Scholar 

  5. Blackwell, T.K., and Weintraub, H. (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250, 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  6. Wright, W.E., Binder, M., and Funk, W. (1991) Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol 11, 4104–4110.

    PubMed  CAS  Google Scholar 

  7. Roulet, E., Busso, S., Camargo, A.A. et al. (2002) High-throughput SELEX SAGE method for quantitative modeling of transcription factor binding sites. Nat Biotechnol 20, 831–835.

    PubMed  CAS  Google Scholar 

  8. Djordjevic, M., and Sengupta, A.M. (2006) Quantitative modeling and data analysis of SELEX experiments. Phys Biol 3, 13–28.

    Article  CAS  Google Scholar 

  9. Gold, L. (1995) Oligonucleotides as research, diagnostic, and therapeutic agents. J Biol Chem 270, 13581–13584.

    PubMed  CAS  Google Scholar 

  10. Jones, S., Daley, D.T., Luscombe, N.M. et al. (2001) Protein-RNA interactions: a structural analysis. Nucleic Acids Res 29, 943–954.

    Article  PubMed  CAS  Google Scholar 

  11. Gerland, U., Moroz, J.D., and Hwa, T. (2002) Physical constraints and functional characteristics of transcription factor-DNA interaction. Proc Natl Acad Sci USA 99, 12015–12020.

    Article  PubMed  CAS  Google Scholar 

  12. Magee, J., and Warwicker, J. (2005) Simulation of non-specific protein-mRNA interactions. Nucleic Acids Res 33, 6694–6699.

    Article  PubMed  CAS  Google Scholar 

  13. Winter, R.B., Berg, O.G., and von Hippel, P.H. (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor – operator interaction: kinetic measurements and conclusions. Biochemistry 20, 6961–6977.

    Article  PubMed  CAS  Google Scholar 

  14. Vant-Hull, B., Payano-Baez, A., Davis, R.H. et al. (1998) The mathematics of SELEX against complex targets. J Mol Biol 278, 579–597.

    Article  PubMed  CAS  Google Scholar 

  15. Stormo, G.D., and Fields, D.S. (1998) Specificity, free energy and information content in protein-DNA interactions. Trends Biochem Sci 23, 109–113.

    Article  PubMed  CAS  Google Scholar 

  16. Schneider, D., Gold, L., and Platt, T. (1993) Selective enrichment of RNA species for tight binding to Escherichia coli rho factor. FASEB J 7, 201–207.

    PubMed  CAS  Google Scholar 

  17. Stormo, G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics 16, 16–23.

    Article  PubMed  CAS  Google Scholar 

  18. Fields, D.S., He, Y., Al-Uzri, A.Y. et al. (1997) Quantitative specificity of the Mnt repressor. J Mol Biol 271, 178–194.

    Article  PubMed  CAS  Google Scholar 

  19. Takeda, Y., Sarai, A., and Rivera, V.M. (1989) Analysis of the sequence-specific interactions between Cro repressor and operator DNA by systematic base substitution experiments. Proc Natl Acad Sci USA 86, 439–443.

    Article  PubMed  CAS  Google Scholar 

  20. Sarai, A., and Takeda, Y. (1989) Lambda repressor recognizes the approximately 2-fold symmetric half-operator sequences asymmetrically. Proc Natl Acad Sci USA 86, 6513–6517.

    Article  PubMed  CAS  Google Scholar 

  21. Benos, P.V., Bulyk, M.L., and Stormo, G.D. (2002) Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res 30, 4442–4451.

    Article  PubMed  CAS  Google Scholar 

  22. Man, T.K., and Stormo, G.D. (2001) Non-independence of Mnt repressor operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Res 29, 2471–2478.

    Article  PubMed  CAS  Google Scholar 

  23. Bulyk, M.L., Johnson, P.L., and Church, G.M. (2002) Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res 30, 1255–1261.

    Article  PubMed  CAS  Google Scholar 

  24. O’Flanagan, R.A., Paillard, G., Lavery, R. et al. (2005) Non-additivity in protein-DNA binding. Bioinformatics 21, 2254–2263.

    Article  PubMed  Google Scholar 

  25. Djordjevic, M., Sengupta, A.M., and Shraiman, B.I. (2003) A biophysical approach to transcription factor binding site discovery. Genome Res 13, 2381–2390.

    Article  PubMed  CAS  Google Scholar 

  26. Wingender, E., Chen, X., Hehl, R. et al. (2001) The TRANSFAC system on gene expression regulation. Nucleic Acids Res 29, 281–283.

    Article  PubMed  CAS  Google Scholar 

  27. Salgado, H., Gama-Castro, S., Martinez-Antonio, A. et al. (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 32, D303–D306.

    Article  PubMed  CAS  Google Scholar 

  28. Frech, K., Quandt, K., and Werner, T. (1997) Finding protein-binding sites in DNA sequences: the next generation. Trends Biochem Sci 22, 103–104.

    Article  PubMed  CAS  Google Scholar 

  29. Robison, K., McGuire, A.M., and Church, G.M. (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 284, 241–254.

    Article  PubMed  CAS  Google Scholar 

  30. Cui, Y., Wang, Q., Stormo, G.D. et al. (1995) A consensus sequence for binding of Lrp to DNA. J Bacteriol 177, 4872–4880.

    PubMed  CAS  Google Scholar 

  31. Liu, J., and Stormo, G.D. (2005) Combining SELEX with quantitative assays to rapidly obtain accurate models of protein-DNA interactions. Nucleic Acids Res 33, e141.

    Article  PubMed  Google Scholar 

  32. Velculescu, V.E., Zhang, L., Vogelstein, B. et al. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  PubMed  CAS  Google Scholar 

  33. Schuster, S. (2008) Next generation sequencing transforms today’s biology. Nat Methods 5, 16–18.

    Article  PubMed  CAS  Google Scholar 

  34. Phillips, C.M., Meng, X., Zhang, L. et al. (2009) Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nat Cell Biol 11, 934–942.

    Article  PubMed  CAS  Google Scholar 

  35. Jagannathan, V., Roulet, E., Delorenzi, M. et al. (2006) HTPSELEX – a database of high-throughput SELEX libraries for transcription factor binding sites. Nucleic Acids Res 34, D90–D94.

    Article  PubMed  CAS  Google Scholar 

  36. Ponomarenko, J.V., Orlova, G.V., Ponomarenko, M.P. et al. (2000) SELEX_DB: an activated database on selected randomized DNA/RNA sequences addressed to genomic sequence annotation. Nucleic Acids Res 28, 205–208.

    Article  PubMed  CAS  Google Scholar 

  37. Lawrence, C.E., Altschul, S.F., Boguski, M.S. et al. (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–214.

    Article  PubMed  CAS  Google Scholar 

  38. Bailey, T.L., and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA, pp. 28–36.

    Google Scholar 

  39. Sengupta, A.M., Djordjevic, M., and Shraiman, B.I. (2002) Specificity and robustness of transcription control networks. Proc Natl Acad Sci USA 99, 2072–2077.

    Article  PubMed  CAS  Google Scholar 

  40. Fletcher, R. (1987) Practical methods of optimization. Wiley, New York, NY.

    Google Scholar 

  41. Irvine, D., Tuerk, C., and Gold, L. (1991) SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J Mol Biol 222, 739–761.

    Article  PubMed  CAS  Google Scholar 

  42. Eckert, K.A., and Kunkel, T.A. (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res 18, 3739–3744.

    Article  PubMed  CAS  Google Scholar 

  43. Nagaraj, V.H., O’Flanagan, R.A., and Sengupta, A.M. (2008) Better estimation of protein-DNA interaction parameters improve prediction of functional sites. BMC Biotechnol 8, 94.

    Article  PubMed  Google Scholar 

  44. Thompson, W., Rouchka, E.C., and Lawrence, C.E. (2003) Gibbs recursive sampler: finding transcription factor binding sites. Nucleic Acids Res 31, 3580–3585.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Djordjevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Djordjevic, M. (2010). Inferring Protein–DNA Interaction Parameters from SELEX Experiments. In: Ladunga, I. (eds) Computational Biology of Transcription Factor Binding. Methods in Molecular Biology, vol 674. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-854-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-854-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-853-9

  • Online ISBN: 978-1-60761-854-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics