Skip to main content

Cancer Systems Biology

  • Protocol
  • First Online:
Systems Biology in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 662))

Abstract

Cancer is a complex and heterogeneous disease, not only at a genetic and biochemical level, but also at a tissue, organism, and population level. Multiple data streams, from reductionist biochemistry in vitro to high-throughput “-omics” from clinical material, have been generated with the hope that they encode useful information about phenotype and, ultimately, tumour behaviour in response to drugs. While these data stand alone in terms of the biology they represent, there is the enticing prospect that if incorporated into systems biology models, they can help understand complex systems behaviour and provide a predictive framework as an additional tool in understanding how tumours change and respond to treatment over time. Since these biological data are heterogeneous and frequently qualitative rather than quantitative, at the present time a single systems biology approach is unlikely to be effective; instead, different computational and mathematical approaches should be tailored to different types of data, and to each other, in order to test and re-test hypotheses. In time, these models might converge and result in usable tractable models which accurately represent human cancer. Likewise, biologists and clinicians need to understand what the requirements of systems biology are so that compatible data are produced for computational modelling. In this review, we describe some theoretical approaches (data-driven and process-driven) and experimental methodologies which are being used in cancer research and the clinical context where they might be applied.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-60761-800-3_17

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  2. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  CAS  PubMed  Google Scholar 

  3. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sobin LH, Wittekind CH (2002) UICC: TNM classification of malignant tumors. Wiley-Liss, New York

    Google Scholar 

  5. Faratian D, Bartlett J (2008) Predictive markers in breast cancer – the future. Histopathology 52:91–98

    Article  CAS  PubMed  Google Scholar 

  6. Payne SJ, Bowen RL, Jones JL, Wells CA (2008) Predictive markers in breast cancer – the present. Histopathology 52:82–90

    Article  CAS  PubMed  Google Scholar 

  7. Faratian D, Moodie SL, Harrison DJ, Goryanin I (2007) Dynamic computational modeling in the search for better breast cancer drug therapy. Pharmacogenomics 8:1757–1761

    Article  CAS  PubMed  Google Scholar 

  8. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  PubMed  Google Scholar 

  10. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Faratian D, Goltsov A, Lebedeva G, Sorokin A, Mullen P, Kay C, Um I, Langdon SP, Goryanin I, Harrison DJ (2009) Systems biology reveals new strategies for personalising cancer medicine and confirms PTEN’’s role in resistance to trastuzumab. Cancer Res 69:6713–6720

    Article  CAS  PubMed  Google Scholar 

  12. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  PubMed  Google Scholar 

  13. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  CAS  PubMed  Google Scholar 

  14. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402

    Article  CAS  PubMed  Google Scholar 

  15. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6:117–127

    Article  CAS  PubMed  Google Scholar 

  16. Fuss H, Dubitzky W, Downes CS, Kurth MJ (2005) Mathematical models of cell cycle regulation. Brief Bioinform 6:163–177

    Article  CAS  PubMed  Google Scholar 

  17. Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, Kim JH, Saito K, Saeki M, Shirouzu M, Yokoyama S, Konagaya A (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J 373:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hendriks BS, Cook J, Burke JM, Beusmans JM, Lauffenburger DA, de Graaf D (2006) Computational modelling of ErbB family phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. Syst Biol (Stevenage) 153:22–33

    Article  CAS  Google Scholar 

  19. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274:30169–30181

    Article  CAS  PubMed  Google Scholar 

  20. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shankaran H, Wiley HS, Resat H (2006) Modeling the effects of HER/ErbB1-3 coexpression on receptor dimerization and biological response. Biophys J 90:3993–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steuer R (2007) Computational approaches to the topology, stability and dynamics of metabolic networks. Phytochemistry 68:2139–2151

    Article  CAS  PubMed  Google Scholar 

  23. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN (2007) Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol 3:144

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moehren G, Markevich N, Demin O, Kiyatkin A, Goryanin I, Hoek JB, Kholodenko BN (2002) Temperature dependence of the epidermal growth factor receptor signaling network can be accounted for by a kinetic model. Biochemistry 41:306–320

    Article  CAS  PubMed  Google Scholar 

  25. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20:370–375

    Article  PubMed  Google Scholar 

  26. Clyde RG, Craig AL, de Breed L, Bown JL, Forrester L, Vojtesek B, Smith G, Hupp T, Crawford J (2009) A novel ataxia-telangiectasia mutated autoregulatory feedback mechanism in murine embryonic stem cells. J R Soc Interface 6:1167–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gueven N, Fukao T, Luff J, Paterson C, Kay G, Kondo N, Lavin MF (2006) Regulation of the Atm promoter in vivo. Genes Chromosomes Cancer 45:61–71

    Article  CAS  PubMed  Google Scholar 

  28. Heckerman D, Geiger D, Chickering D (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197–243

    Google Scholar 

  29. Pearl J (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Francisco

    Google Scholar 

  30. Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799–805

    Article  CAS  PubMed  Google Scholar 

  31. Kim SY, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 4:228–235

    Article  CAS  PubMed  Google Scholar 

  32. Imoto S, Kim S, Goto T, Miyano S, Aburatani S, Tashiro K, Kuhara S (2003) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J Bioinform Comput Biol 1:231–252

    Article  CAS  PubMed  Google Scholar 

  33. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529

    Article  CAS  PubMed  Google Scholar 

  34. Guha U, Chaerkady R, Marimuthu A, Patterson AS, Kashyap MK, Harsha HC, Sato M, Bader JS, Lash AE, Minna JD, Pandey A, Varmus HE (2008) Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA 105:14112–14117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Chan C (2004) Inferring pathways and networks with a Bayesian framework. FASEB J 18:746–748

    Article  CAS  PubMed  Google Scholar 

  36. Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22:e184–e190

    Article  CAS  PubMed  Google Scholar 

  37. Matthäus F, Smith VA, Fogtman A, Sommer WH, Leonardi-Essmann F, Lourdusamy A, Reimers MA, Spanagel R, Gebicke-Haerter PJ (2009) Interactive molecular networks obtained by computer-aided conversion of microarray data from brains of alcohol-drinking rats. Pharmacopsychiatry 42:S118–S128

    Article  CAS  PubMed  Google Scholar 

  38. Sorribas A, Savageau MA (1989) A comparison of variant theories of intact biochemical systems. I. Enzyme-enzyme interactions and biochemical systems theory. Math Biosci 94:161–193

    Article  CAS  PubMed  Google Scholar 

  39. Savageau MA, Voit EO (2008) Power-law approach to modeling biological systems. 1. Theory, 60th edn. pp 519–544

    Google Scholar 

  40. Voit EO (2002) Models-of-data and models-of-processes in the post-genomic era. Math Biosci 180:263–274

    Article  PubMed  Google Scholar 

  41. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  PubMed  Google Scholar 

  42. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA Jr, Marks JR, Dressman HK, West M, Nevins JR (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357

    Article  CAS  PubMed  Google Scholar 

  43. Wulfkuhle J, Espina V, Liotta L, Petricoin E (2004) Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur J Cancer 40:2623–2632

    Article  CAS  PubMed  Google Scholar 

  44. Moodie SL, Sorokin A, Goryanin I, Ghazal P (2009) Graphical notation to describe the logical interactions of biological pathways. J Integr Bioinform 3:36

    Google Scholar 

  45. Calzone L, Gelay A, Zinovyev A, Radvanyi F, Barillot E (2008) A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 4:173

    Article  PubMed  PubMed Central  Google Scholar 

  46. Le Novere N, Moodie SL, Sorokin A, Hucka M, Schreiber F, Demir E, Mi H, Matsuoka Y, Wegner K, Kitano H (2008) Systems biology graphical notation: process diagram level 1. Nature Precedings

    Google Scholar 

  47. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Chichester

    Google Scholar 

  48. Pachepsky E, Crawford JW, Bown JL, Squire G (2001) Towards a general theory of biodiversity. Nature 410:923–926

    Article  CAS  PubMed  Google Scholar 

  49. Saltelli A, Tarantola S, Chan K (1999) Quantatative model-independent method for sensitivity analysis of model output. Technometrics 41:39–56

    Article  Google Scholar 

  50. Feng XJ, Hooshangi S, Chen D, Li G, Weiss R, Rabitz H (2004) Optimizing genetic circuits by global sensitivity analysis. Biophys J 87:2195–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  52. Kirby J, Heath PR, Shaw PJ, Hamdy FC (2007) Gene expression assays. Adv Clin Chem 44:247–292

    Article  CAS  PubMed  Google Scholar 

  53. Kennett JY, Watson SK, Saprunoff H, Heryet C, Lam WL (2008) Technical demonstration of whole genome array comparative genomic hybridization. J Vis Exp, 870

    Google Scholar 

  54. Edwards RA (2007) Laser capture microdissection of mammalian tissue. J Vis Exp, 309

    Google Scholar 

  55. Camp RL, Chung GG, Rimm DL (2002) Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 8:1323–1327

    Article  CAS  PubMed  Google Scholar 

  56. Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2008) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797

    Article  Google Scholar 

  57. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5:2512–2521

    Article  CAS  PubMed  Google Scholar 

  58. Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE, van Rheenen J (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Edward M (2001) Melanoma cell-derived factors stimulate glycosaminoglycan synthesis by fibroblasts cultured as monolayers and within contracted collagen lattices. Br J Dermatol 144:465–470

    Article  CAS  PubMed  Google Scholar 

  60. Dixon JM (2004) The scientific value of preoperative studies and how they can be used. Breast Cancer Res Treat 87(Suppl 1):S19–S26

    Article  CAS  PubMed  Google Scholar 

  61. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, Boeddinghaus I, Salter J, Detre S, Hills M, Ashley S, Francis S, Walsh G, A’Hern R (2006) Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. Clin Cancer Res 12:1024s–1030s

    Article  CAS  PubMed  Google Scholar 

  62. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, A’Hern R, Salter J, Detre S, Hills M, Walsh G (2007) Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J Natl Cancer Inst 99:167–170

    Article  CAS  PubMed  Google Scholar 

  63. Alberts DS, Markman M, Armstrong D, Rothenberg ML, Muggia F, Howell SB (2002) Intraperitoneal therapy for stage III ovarian cancer: a therapy whose time has come! J Clin Oncol 20:3944–3946

    PubMed  Google Scholar 

  64. Nagtegaal ID, Gaspar CG, Peltenburg LT, Marijnen CA, Kapiteijn E, van de Velde CJ, Fodde R, van Krieken JH (2005) Radiation induces different changes in expression profiles of normal rectal tissue compared with rectal carcinoma. Virchows Arch 446:127–135

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Faratian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Faratian, D., Bown, J.L., Smith, V.A., Langdon, S.P., Harrison, D.J. (2010). Cancer Systems Biology. In: Yan, Q. (eds) Systems Biology in Drug Discovery and Development. Methods in Molecular Biology, vol 662. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-800-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-800-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-799-0

  • Online ISBN: 978-1-60761-800-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics