Skip to main content

Hepatic Stem Cells

  • Protocol
  • First Online:
Hepatocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 640))

Abstract

Early studies in hepatocyte turnover and liver regeneration showed that the parenchymal cell, the hepatocyte, was the primary and only cell involved in tissue renewal. However, new studies of liver regeneration, hepatocarcinogenesis, liver transplantation, and various cell lines have shown that a variety of cell types participate in maintaining hepatocyte number and mass and question the dogma of the previous hierarchy of hepatocyte differentiation in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S. et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  2. Frankel, M.S. (2000). In search of stem cell policy. Science 287, 1397.

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  4. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K. (2008) Induced pluripotent stem cells generated without viral integration. Science 322, 945–949.

    Article  PubMed  CAS  Google Scholar 

  5. Cao, F., Drukker, M., Lin, S. et al. (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9, 107–117.

    Article  PubMed  CAS  Google Scholar 

  6. Weissman, I.L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446.

    Article  PubMed  CAS  Google Scholar 

  7. Gage, F.H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  8. Potten, C.S. (1998) Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 821–830.

    Article  PubMed  CAS  Google Scholar 

  9. Watt, F.M. (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 831–837.

    Article  PubMed  CAS  Google Scholar 

  10. Alison, M. and Sarraf, C. (1998) Hepatic stem cells. J. Hepatol. 29, 676–682.

    Article  PubMed  CAS  Google Scholar 

  11. Pittenger, M.F., Mackay, A.M., Beck, S.C. et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  12. Gussoni, E., Soneoka, Y., Strickland, C.D. et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.

    PubMed  CAS  Google Scholar 

  13. Ferrari, G., Cusella-De Angelis, G., Coletta, M. et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.

    Article  PubMed  CAS  Google Scholar 

  14. Corbel, S.Y., Lee, A., Yi, L. et al. (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 9, 1528–1532.

    Article  PubMed  CAS  Google Scholar 

  15. Jackson, K.A., Majka, S.M., Wang, H. et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  16. Orlic, D., Kajstura, J., Chimenti, S. et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  17. Orlic, D., Kajstura, J., Chimenti, S. et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349.

    Article  PubMed  CAS  Google Scholar 

  18. Asahara, T., Masuda, H., Takahashi, T. et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228.

    PubMed  CAS  Google Scholar 

  19. Lin, Y., Weisdorf, D.J., Solovey, A., and Hebbel, R.P. (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77.

    Article  PubMed  CAS  Google Scholar 

  20. Lagasse, E., Connors, H., Al-Dhalimy, M. et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229–1234.

    Article  PubMed  CAS  Google Scholar 

  21. Petersen, B.E., Bowen, W.C., Patrene, K.D. et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  22. Theise, N.D., Nimmakayalu, M., Gardner, R. et al. (2000) Liver from bone marrow in humans. Hepatology 32, 11–16.

    Article  PubMed  CAS  Google Scholar 

  23. Krause, D.S., Theise, N.D., Collector, M.I. et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377.

    Article  PubMed  CAS  Google Scholar 

  24. Borue, X., Lee, S., Grove, J. et al. (2004) Bone marrow-derived cells contribute to epithelial engraftment during wound healing. Am. J. Pathol. 165, 1767–1772.

    Article  PubMed  Google Scholar 

  25. Mezey, E., Chandross, K.J., Harta, G., Maki, R.A., and McKercher, S.R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  26. Kopen, G.C., Prockop, D.J., and Phinney, D.G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10711–10716.

    Article  PubMed  CAS  Google Scholar 

  27. Brazelton, T.R., Rossi, F.M., Keshet, G.I., and Blau, H.M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  28. Weimann, J.M., Johansson, C.B., Trejo, A., and Blau, H.M. (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959–966.

    Article  PubMed  CAS  Google Scholar 

  29. Willenbring, H., Bailey, A.S., Foster, M. et al. (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744–748.

    Article  PubMed  CAS  Google Scholar 

  30. Willenbring, H. and Grompe, M. (2004) Delineating the hepatocyte’s hematopoietic fusion partner. Cell Cycle 3, 1489–1491.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, X., Montini, E., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2002) Kinetics of liver repopulation after bone marrow transplantation. Am. J. Pathol. 161, 565–574.

    Article  PubMed  Google Scholar 

  32. Wang, X., Willenbring, H., Akkari, Y. et al. (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901.

    Article  PubMed  CAS  Google Scholar 

  33. Camargo, F.D., Finegold, M., and Goodell, M.A. (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J. Clin. Invest. 113, 1266–1270.

    PubMed  CAS  Google Scholar 

  34. Fujino, H., Hiramatsu, H., Tsuchiya, A. et al. (2007) Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c)null mice through cell fusion. FASEB J. 21, 3499–3510.

    Article  PubMed  CAS  Google Scholar 

  35. Faggioli, F., Sacco, M.G., Susani, L., Montagna, C., and Vezzoni, P. (2008) Cell fusion is a physiological process in mouse liver. Hepatology 48, 1655–1664.

    Article  PubMed  CAS  Google Scholar 

  36. Harris, R.G., Herzog, E.L., Bruscia, E.M., Grove, J.E., Van Arnam, J.S., and Krause, D.S. (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305, 90–93.

    Article  PubMed  CAS  Google Scholar 

  37. Brittan, M., Braun, K.M., Reynolds, L.E. et al. (2005) Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J. Pathol. 205, 1–13.

    Article  PubMed  Google Scholar 

  38. Wurmser, A.E., Nakashima, K., Summers, R.G. et al. (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356.

    Article  PubMed  CAS  Google Scholar 

  39. Jang, Y.Y., Collector, M.I., Baylin, S.B., Diehl, A.M., and Sharkis, S.J. (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat. Cell Biol. 6, 532–539.

    Article  PubMed  CAS  Google Scholar 

  40. Oh, S.H., Witek, R.P., Bae, S.H. et al. (2007) Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology 132, 1077–1087.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang, S., Wang, D., Estrov, Z., Raj, S., Willerson, J.T., and Yeh, E.T. (2004) Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110, 3803–3807.

    Article  PubMed  Google Scholar 

  42. Tanabe, Y., Tajima, F., Nakamura, Y. et al. (2004) Analyses to clarify rich fractions in hepatic progenitor cells from human umbilical cord blood and cell fusion. Biochem. Biophys. Res. Commun. 324, 711–718.

    Article  PubMed  CAS  Google Scholar 

  43. Ponlick, V. (1890) Leberresection and Leberreaction. Verh. Dtsch. Ges. Chir. 19, 28.

    Google Scholar 

  44. Michalopoulos, G.K. (2007) Liver regeneration. J. Cell Physiol. 213, 286–300.

    Article  PubMed  CAS  Google Scholar 

  45. Bucher, N.L., Schrock, T.R., and Moolten, F.L. (1969) An experimental view of hepatic regeneration. Johns Hopkins Med. J. 125, 250–257.

    PubMed  CAS  Google Scholar 

  46. Fausto, N. (2000) Liver regeneration. J. Hepatol. 32 Suppl 1, 19–31.

    Article  PubMed  CAS  Google Scholar 

  47. Fausto, N. (1999) Lessons from genetically engineered animal models. V. Knocking out genes to study liver regeneration: present and future. Am. J. Physiol. 277, G917–G921.

    PubMed  CAS  Google Scholar 

  48. Fausto, N. (2001) Liver regeneration: from laboratory to clinic. Liver Transplant. 7, 835–844.

    Article  CAS  Google Scholar 

  49. Lanier, T.L., Berger, E.K., and Eacho, P.I. (1989) Comparison of 5-bromo-2-deoxyuridine and [3H]thymidine for studies of hepatocellular proliferation in rodents. Carcinogenesis 10, 1341–1343.

    Article  PubMed  CAS  Google Scholar 

  50. Michalopoulos, G.K. and DeFrances, M.C. (1997) Liver regeneration. Science 276, 60–66.

    Article  PubMed  CAS  Google Scholar 

  51. Shiojiri, N., Lemire, J.M., and Fausto, N. (1991) Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 51, 2611–2620.

    PubMed  CAS  Google Scholar 

  52. Evarts, R.P., Nagy, P., Marsden, E., and Thorgeirsson, S.S. (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8, 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  53. Evarts, R.P., Nagy, P., Nakatsukasa, H., Marsden, E., and Thorgeirsson, S.S. (1989) In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 49, 1541–1547.

    PubMed  CAS  Google Scholar 

  54. Baumann, U., Crosby, H.A., Ramani, P., Kelly, D.A., and Strain, A.J. (1999) Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology 30, 112–117.

    Article  PubMed  CAS  Google Scholar 

  55. Roskams, T., De Vos, R., Van Eyken, P., Myazaki, H., Van Damme, B., and Desmet, V. (1998) Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J. Hepatol. 29, 455–463.

    Article  PubMed  CAS  Google Scholar 

  56. Dorrell, C., Erker, L., Lanxon-Cookson, K.M. et al. (2008) Surface markers for the murine oval cell response. Hepatology 48, 1282–1291.

    Article  PubMed  CAS  Google Scholar 

  57. Kollet, O., Shivtiel, S., Chen, Y.Q. et al. (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J. Clin. Invest. 112, 160–169.

    PubMed  CAS  Google Scholar 

  58. Lapidot, T., Dar, A., and Kollet, O. (2005) How do stem cells find their way home? Blood 106, 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, X., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2003) The origin and liver repopulating capacity of murine oval cells. Proc. Natl. Acad. Sci. USA 100 Suppl 1, 11881–11888.

    Article  PubMed  CAS  Google Scholar 

  60. Suzuki, A., Sekiya, S., Onishi, M. et al. (2008) Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology 48, 1964–1978.

    Article  PubMed  CAS  Google Scholar 

  61. Jelnes, P., Santoni-Rugiu, E., Rasmussen, M. et al. (2007) Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology 45, 1462–1470.

    Article  PubMed  CAS  Google Scholar 

  62. Sell, S. (1993) Liver stem cells. Science 260, 1224.

    Article  PubMed  CAS  Google Scholar 

  63. Lazaro, C.A., Rhim, J.A., Yamada, Y., and Fausto, N. (1998) Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 58, 5514–5522.

    PubMed  CAS  Google Scholar 

  64. Sell, S. (1998) Comparison of liver progenitor cells in human atypical ductular reactions with those seen in experimental models of liver injury. Hepatology 27, 317–331.

    Article  PubMed  CAS  Google Scholar 

  65. Tee, L.B., Kirilak, Y., Huang, W.H., Smith, P.G., Morgan, R.H., and Yeoh, G.C. (1996) Dual phenotypic expression of hepatocytes and bile ductular markers in developing and preneoplastic rat liver. Carcinogenesis 17, 251–259.

    Article  PubMed  CAS  Google Scholar 

  66. Kaplanski, C., Pauley, C.J., Griffiths, T.G., Kawabata, T.T., and Ledwith, B.J. (2000) Differentiation of rat oval cells after activation of peroxisome proliferator-activated receptor alpha43. Cancer Res. 60, 580–587.

    PubMed  CAS  Google Scholar 

  67. Knight, B., Yeap, B.B., Yeoh, G.C., and Olynyk, J.K. (2005) Inhibition of adult liver progenitor (oval) cell growth and viability by an agonist of the peroxisome proliferator activated receptor (PPAR) family member gamma, but not alpha or delta. Carcinogenesis 26, 1782–1792.

    Article  PubMed  CAS  Google Scholar 

  68. Oben, J.A., Roskams, T., Yang, S. et al. (2003) Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 38, 664–673.

    Article  PubMed  CAS  Google Scholar 

  69. Shiota, G., Kunisada, T., Oyama, K. et al. (2000) In vivo transfer of hepatocyte growth factor gene accelerates proliferation of hepatic oval cells in a 2-acetylaminofluorene/partial hepatectomy model in rats. FEBS Lett. 470, 325–330.

    Article  PubMed  CAS  Google Scholar 

  70. Rountree, C.B., Senadheera, S., Mato, J.M., Crooks, G.M., and Lu, S.C. (2008) Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice. Hepatology 47, 1288–1297.

    Article  PubMed  CAS  Google Scholar 

  71. Tang, Y., Kitisin, K., Jogunoori, W. et al. (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc. Natl. Acad. Sci. USA 105, 2445–2450.

    Article  PubMed  CAS  Google Scholar 

  72. Yang, Z.F., Ho, D.W., Ng, M.N. et al. (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166.

    Article  PubMed  CAS  Google Scholar 

  73. Avital, I., Inderbitzin, D., Aoki, T. et al. (2001) Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem. Biophys. Res. Commun. 288, 156–164.

    Article  PubMed  CAS  Google Scholar 

  74. Azuma, H., Hirose, T., Fujii, H. et al. (2003) Enrichment of hepatic progenitor cells from adult mouse liver. Hepatology 37, 1385–1394.

    Article  PubMed  CAS  Google Scholar 

  75. Sahin, M.B., Schwartz, R.E., Buckley, S.M. et al. (2008) Isolation and characterization of a novel population of progenitor cells from unmanipulated rat liver. Liver Transplant. 14, 333–345.

    Article  Google Scholar 

  76. Mitaka, T., Mizuguchi, T., Sato, F., Mochizuki, C., and Mochizuki, Y. (1998) Growth and maturation of small hepatocytes. J. Gastroenterol. Hepatol. 13 Suppl, S70–S77.

    PubMed  Google Scholar 

  77. Miyamoto, S., Hirata, K., Sugimoto, S., Harada, K., and Mitaka, T. (2005) Expression of cytochrome P450 enzymes in hepatic organoid reconstructed by rat small hepatocytes. J. Gastroenterol. Hepatol. 20, 865–872.

    Article  PubMed  CAS  Google Scholar 

  78. Sugimoto, S., Mitaka, T., Ikeda, S. et al. (2002) Morphological changes induced by extracellular matrix are correlated with maturation of rat small hepatocytes. J. Cell Biochem. 87, 16–28.

    Article  PubMed  CAS  Google Scholar 

  79. Gordon, G.J., Butz, G.M., Grisham, J.W., and Coleman, W.B. (2002) Isolation, short-term culture, and transplantation of small hepatocyte-like progenitor cells from retrorsine-exposed rats. Transplantation 73, 1236–1243.

    Article  PubMed  Google Scholar 

  80. Gordon, G.J., Coleman, W.B., and Grisham, J.W. (2000) Induction of cytochrome P450 enzymes in the livers of rats treated with the pyrrolizidine alkaloid retrorsine. Exp. Mol. Pathol. 69, 17–26.

    Article  PubMed  CAS  Google Scholar 

  81. Gordon, G.J., Coleman, W.B., Hixson, D.C., and Grisham, J.W. (2000) Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am. J. Pathol. 156, 607–619.

    Article  PubMed  CAS  Google Scholar 

  82. LaBarge, M.A. and Blau, H.M. (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589–601.

    Article  PubMed  CAS  Google Scholar 

  83. Wang, X., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2001) Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am. J. Pathol. 158, 571–579.

    Article  PubMed  CAS  Google Scholar 

  84. Theise, N.D., Badve, S., Saxena, R. et al. (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240.

    Article  PubMed  CAS  Google Scholar 

  85. Cotran, R.S. (1999) Pathologic Basis of Disease, 6th ed., W.B. Saunders Company, Philadelphia London.

    Google Scholar 

  86. Korbling, M., Katz, R.L., Khanna, A. et al. (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N. Engl. J. Med. 346, 738–746.

    Article  PubMed  Google Scholar 

  87. Avital, I., Inderbitzin, D., Aoki, T. et al. (2001) Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem. Biophys. Res. Commun. 288, 156–164.

    Article  PubMed  CAS  Google Scholar 

  88. Fiegel, H.C., Lioznov, M.V., Cortes-Dericks, L. et al. (2003) Liver-specific gene expression in cultured human hematopoietic stem cells. Stem Cells 21, 98–104.

    Article  PubMed  CAS  Google Scholar 

  89. Grompe, M., al-Dhalimy, M., Finegold, M. et al. (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307.

    Article  PubMed  CAS  Google Scholar 

  90. Grompe, M., Lindstedt, S., al-Dhalimy, M. et al. (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 10, 453–460.

    Article  PubMed  CAS  Google Scholar 

  91. Vassilopoulos, G., Wang, P.R., and Russell, D.W. (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schwartz, R.E., Verfaillie, C. (2010). Hepatic Stem Cells. In: Maurel, P. (eds) Hepatocytes. Methods in Molecular Biology, vol 640. Humana Press. https://doi.org/10.1007/978-1-60761-688-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-688-7_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-687-0

  • Online ISBN: 978-1-60761-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics