Skip to main content

Combined Peptidomics and Genomics Approach to the Isolation of Amphibian Antimicrobial Peptides

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 615))

Abstract

A large number of diverse antimicrobial peptides have been found in amphibian skins, and many more remain to be identified. It is sufficiently easy to obtain amounts of gland secretions sufficient for both identification and functional testing of the bioactive peptides. We describe here a systematic peptidomics approach which we combined with genomics and functional testing. This has proven to be an effective way to identify amphibian antimicrobial peptides, including novel peptide families. Protocols are exemplified for Bombina maxima and Odorrana grahami and can be easily adapted for use with other amphibian species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.

    Article  PubMed  CAS  Google Scholar 

  2. Epand, R.M. and Vogel, H.J. (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1462, 11–28.

    Article  PubMed  CAS  Google Scholar 

  3. Borgden, K.A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250.

    Article  Google Scholar 

  4. Clarke, B.T. (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. Camb. Philos. Soc. 72, 365–379.

    Article  PubMed  CAS  Google Scholar 

  5. Duda, T.F., Jr, Vanhoye, D. and Nicolas, P. (2002) Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides. Mol. Biol. Evol. 19, 858–864.

    PubMed  CAS  Google Scholar 

  6. Conlon, J.M., Kolodziejek, J. and Nowotny, N. (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta 1696, 1–14.

    PubMed  CAS  Google Scholar 

  7. Lai, R., Zheng, Y.T., Shen, J.H., Liu, G.J., Liu, H., Lee, W.H., et al. (2002) Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23, 427–435.

    Article  PubMed  CAS  Google Scholar 

  8. Conlon, J.M., Al-Ghaferi, N., Abraham, B., Jiansheng, H., Cosette, P., Leprince, J., et al. (2006) Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptide 27, 2111–2117.

    CAS  Google Scholar 

  9. Barra, D., Simmaco, M. and Boman, H.G. (1998) Gene-encoded peptide antibiotics and innate immunity. Do ‘animalcules’ have defence budgets? FEBS Lett. 430, 130–134.

    Article  PubMed  CAS  Google Scholar 

  10. Matutte, B., Storey, K.B., Knoop, F.C. and Conlon, J.M. (2000) Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. FEBS Lett. 483, 135–138.

    Article  PubMed  CAS  Google Scholar 

  11. Li, J., Xu, X., Xu, C., Zhou, W., Zhang, K., Yu, H., et al. (2007) Anti-infection peptidomics of amphibian skin. Mol. Cell. Proteomics 6, 882–894.

    Article  PubMed  CAS  Google Scholar 

  12. Tyler, M.J., Stone, D.J. and Bowie, J.H. (1992) A novel method for the release and collection of dermal, glandular secretions from the skin of frogs. J. Pharmacol. Toxicol. Methods 28, 199–200.

    Article  PubMed  CAS  Google Scholar 

  13. Erspamer, V. (1971) Biogenic amines and active polypeptides of amphibian skin. Ann. Rev. Pharmacol. 2, 327–350.

    Article  Google Scholar 

  14. Daly, J.W., Brown, G.B., Mensah-Dwumah, M. and Myers, C.W. (1978) Classification of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon 16, 163–188.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou, M., Wang, L., Owens, D.E., Chen, T., Walker, B. and Shaw, C. (2007) Rapid identification of precursor cDNAs encoding five structural classes of antimicrobial peptides from pickerel frog (Rana palustris) skin secretion by single step “shotgun” cloning. Peptides 28, 1605–1610.

    Article  PubMed  CAS  Google Scholar 

  16. Lu, X., Ma, Y., Wu, J. and Lai, R. (2008) Two serine protease inhibitors from the skin secretions of the toad, Bombina microdeladigitora. Comp. Biochem. Physiol. B 149, 608–612.

    Article  PubMed  Google Scholar 

  17. Liu, X., You, D., Chen, L., Wang, X., Zhang, K. and Lai, R. (2008) A novel bradykinin-like peptide from skin secretions of the frog, Rana nigrovittata. J. Pept. Sci. 14, 626–630.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, X., Song, Y., Li, J., Liu, H., Xu, X., Lai, R., et al. (2007) A new family of antimicrobial peptides from skin secretions of Rana pleuraden. Peptides 28, 2069–2074.

    Article  PubMed  CAS  Google Scholar 

  19. Lu, Y., Ma, Y., Wang, X., Liang, J., Zhang, C., Zhang, K., et al. (2008) The first antimicrobial peptide from sea amphibian. Mol. Immunol. 45, 678–681.

    Article  PubMed  CAS  Google Scholar 

  20. Li, J., Zhang, C., Xu, X., Wang, J., Yu, H., Lai, R., et al. (2007) Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J. 21, 2466–2473.

    Article  PubMed  CAS  Google Scholar 

  21. Lu, Y., Li, J., Yu, H., Xu, X., Liang, J., Tian, Y., et al. (2006) Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides 27, 3085–3091.

    Article  PubMed  CAS  Google Scholar 

  22. Che, Q., Zhou, Y., au>Yang, H., Li, J., Xu, X. and Lai, R. (2008) A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami. Peptides 29, 529–535.

    Article  PubMed  CAS  Google Scholar 

  23. Nutkins, J.C. and Williams, D.H. (1989) Identification of highly acidic peptides from processing of the skin prepropeptides of Xenopus laevis. Eur. J. Biochem. 181, 97–102.

    Article  PubMed  CAS  Google Scholar 

  24. Giovannini, M.G., Poulter, L., Gibson, B.W. and Williams, D.H. (1987) Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochem. J. 243, 113–120.

    PubMed  CAS  Google Scholar 

  25. Marenah, L., Flatt, P.R., Orr, D.F., McClean, S., Shaw, C. and Abdel-Wahab, Y.H. (2004) Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. J. Endocrinol. 181, 347–354.

    Article  PubMed  CAS  Google Scholar 

  26. Kwon, S.Y., Carlson, B.A., Park, J.M. and Lee, B.J. (2000) Structural organization and expression of the gaegurin 4 gene of Rana rugosa. Biochim. Biophys. Acta 1492, 185–190.

    PubMed  CAS  Google Scholar 

  27. Simmaco, M., Mignogna, G., Barra, D. and Bossa, F. (1994) Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem. 269, 11956–11961.

    PubMed  CAS  Google Scholar 

  28. Chen, T., Zhou, M., Rao, P., Walker, B. and Shaw, C. (2006) The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and North American Rana frogs share the same families of skin antimicrobial peptides. Peptides 27, 1738–1744.

    Article  PubMed  CAS  Google Scholar 

  29. Zhou, J., McClean, S., Thompson, A., Zhang, Y., Shaw, C., Rao, P., et al. (2006) Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Peptides 27, 3077–3084.

    Article  PubMed  CAS  Google Scholar 

  30. Clark, D.P., Durell, S., Maloy, W.L. and Zasloff, M. (1994) Ranalexin, A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J. Biol. Chem. 269, 10849–10855.

    PubMed  CAS  Google Scholar 

  31. Chen, T., Zhou, M., Chen, W., Lorimer, J., Rao, P., Walker, B., et al. (2006) Cloning from tissue surrogates: antimicrobial peptide (esculentin) cDNAs from the defensive skin secretions of Chinese ranid frogs. Genomics 87, 638–844.

    Article  PubMed  CAS  Google Scholar 

  32. Simmaco, M., Mignogna, G., Canofeni, S., Barra, D., Simmaco, M. and Rivas, L. (1996) Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem. 242, 788–792.

    Article  PubMed  CAS  Google Scholar 

  33. Mignogna, G., Simmaco, M., Kreil, G. and Barra, D. (1993) Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegate. EMBO J. 12, 4829–4832.

    PubMed  CAS  Google Scholar 

  34. Gibson, B.W., Tang, D.Z., Mandrell, R., et al. (1991) Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J. Biol. Chem. 1266, 23103–23111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lai, R. (2010). Combined Peptidomics and Genomics Approach to the Isolation of Amphibian Antimicrobial Peptides. In: Soloviev, M. (eds) Peptidomics. Methods in Molecular Biology, vol 615. Humana Press. https://doi.org/10.1007/978-1-60761-535-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-535-4_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-534-7

  • Online ISBN: 978-1-60761-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics