Skip to main content

Measurement of Bioaccessibility of Organic Pollutants in Soil

  • Protocol
  • First Online:
Bioremediation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 599))

Abstract

The quantification of organic contaminant bioaccessibility in soils and sediments is essential for the risk assessment and remediation of contaminated land. Within this framework, practitioners require standardised protocols. Cyclodextrins are a group of macrocyclic compounds that can form inclusion complexes with organic xenobiotics. This occurrence can be exploited to measure the labile/rapidly desorbable compound fraction, which correlates with microbial degradation. We present a rapid and easily reproducible HPCD shake extraction technique that has been experimentally demonstrated to directly predict microbial availability and degradation in soil. This method can provide practitioners with both an indication of bioremediation end-points and may be valuable in the risk assessment of contaminated land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doick, K. J., Clasper, P. J., Urmann, K., and Semple, K. T. (2006) Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environ. Pollut. 144, 345–354.

    Article  CAS  Google Scholar 

  2. Kelsey, J. W., Kottler, B. D., and Alexander, M. (1997) Selective chemical extraction to predict bioavailability of soil-aged organic chemicals. Environ. Sci. Technol. 31, 214–217.

    Article  CAS  Google Scholar 

  3. Alexander, M. (2000) Ageing, bioavailability and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 34, 4259–4262.

    Article  CAS  Google Scholar 

  4. Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., and Harms, H. (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ. Sci. Technol. 38, 228A–231A.

    Article  CAS  Google Scholar 

  5. Liste, H.-H., and Alexander, M. (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46, 1011–1017.

    Article  CAS  Google Scholar 

  6. Cuypers, C., Grotenhuis, T., Joziasse, J., and Rulkens, W. (2002) Rapid persulphate oxidation predicts PAH bioavailability in soils and sediments. Environ. Sci. Technol. 34, 2057–2063.

    Article  Google Scholar 

  7. Hawthorne, S. B., and Grabanski, C. B. (2000) Correlating selective supercritical fluid extraction with bioremediation behaviour of PAHs in a field treatment plot. Environ. Sci. Technol. 34,4103–4110.

    Article  CAS  Google Scholar 

  8. Szejtli, J. (1998) Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753.

    Article  CAS  Google Scholar 

  9. Del Valle, E. M. M. (2004) Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046.

    Article  CAS  Google Scholar 

  10. Bosma, T. N. P., Middeldorp, P. J. M., Schraa, G., and Zehnder, A. J. B. (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ. Sci. Technol. 31, 248–252.

    Article  CAS  Google Scholar 

  11. Cornelissen, G., Van Noort, P. C. M., and Govers, H. J. A. (1998) Mechanism of slow desorption of organic compounds from sediments: A study using model sorbents. Environ. Sci. Technol. 32, 3124–3131.

    Article  CAS  Google Scholar 

  12. Rhodes, A. H., Dew, N. M., and Semple, K. T. (2008) Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil. Environ. Toxicol. Chem. 27, 1488–1495.

    Article  CAS  Google Scholar 

  13. Reid, B. J. Stokes, J. D. Jones, K.C., and Semple, K. T. (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 34, 3174–3179.

    Article  CAS  Google Scholar 

  14. Patterson, C. J., Semple, K. T., and Paton, G. I. (2004) Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralization in soil. FEMS Microbiol. Lett. 241, 215–220.

    Article  CAS  Google Scholar 

  15. Hickman, Z. A., and Reid, B. J. (2005) Towards a more appropriate water-based extraction for the assessment of organic contaminant availability. Environ. Pollut. 138,299–306.

    Article  CAS  Google Scholar 

  16. Allan, I. J., Semple, K. T., Hare, R., and Reid, B. J. (2006) Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ. Pollut. 144, 562–571.

    Article  CAS  Google Scholar 

  17. Hickman, Z. A., Swindell, A. L., Allan, I. J., Rhodes, A. H., Hare, R., Semple, K. T. and Reid, B. J. (2008) Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Environ. Pollut. doi:10.1016/j.envpol.2008.04.022.

    Google Scholar 

  18. Dew, N. M., Paton, G. I., and Semple, K. T. (2005) Prediction of phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques. Environ. Pollut. 138, 316–323.

    Article  CAS  Google Scholar 

  19. Doick, K. J., Dew, N. M., and Semple, K. T. (2005) Linking catabolism to cyclodextrin extractability: Determination of the microbial availability of PAHs in soil. Environ. Sci. Technol. 39, 8858–8864.

    Article  CAS  Google Scholar 

  20. Cuypers, C., Clemens, R., Grotenhuis, T., and Rulkins, W. (2001) Prediction of petroleum hydrocarbon bioavailability in contaminated sediments and soils. Soil Sediment. Contam. 19, 459–482.

    Article  Google Scholar 

  21. Cuypers, C., Clemens, R., Grotenhuis, T., and Rulkins, W. (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46, 1235–1245.

    Article  CAS  Google Scholar 

  22. Stokes, J. D., Wilkinson, A., Reid, B. J., Jones, K. C., and Semple, K. T. (2005) Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-β-cyclodextrin extraction technique. Environ. Toxicol. Chem. 24, 1325–1330.

    Article  CAS  Google Scholar 

  23. Papadopoulos, A., Paton, G. I., Reid, B. J., and Semple, K. T. (2007) Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. Jl Environ. Monit. 9, 516–522.

    Article  CAS  Google Scholar 

  24. Stroud, J. L., Paton, G. I., and Semple, K. T. (2008) Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil. Chemosphere doi:10.1016/j.chemosphere.2008.09. 071.

    Google Scholar 

  25. Stroud, J. L., Paton, G. I., and Semple, K. T. (2008) Linking chemical extraction to microbial degradation of 14C-hexadecane in soil. Environ Pollut. doi:10.1016/j.envpol.2008.01.018.

    Google Scholar 

  26. Reid, B. J., MacLeod, C. J. A., Lee, P. H., Morriss, A. W. J., Stokes, J. D., and Semple, K. T. (2001) A simple 14C-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. FEMS Microbiol. Lett. 196, 141–146.

    Article  CAS  Google Scholar 

  27. Doick, K. J., and Semple, K. T. (2003) The effect of soil : water ratios on the mineralization of phenanthrene: LNAPL mixtures in soil. FEMS Microbiol. Lett. 220, 23–33.

    Article  Google Scholar 

  28. Carmichael, L. M., and Pfaender, F. K. (1997) Polynuclear aromatic hydrocarbon metabolism in soils: relationship to soil characteristics and pre-exposure. Environ. Toxicol. Chem. 16, 666–675.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

McAllister, L., Semple, K.T. (2010). Measurement of Bioaccessibility of Organic Pollutants in Soil. In: Cummings, S. (eds) Bioremediation. Methods in Molecular Biology, vol 599. Humana Press. https://doi.org/10.1007/978-1-60761-439-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-439-5_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-440-1

  • Online ISBN: 978-1-60761-439-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics