Skip to main content

Examination of CYP3A and P-Glycoprotein-Mediated Drug–Drug Interactions Using Animal Models

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

With the advent of polytherapy for cancer treatment it has become prudent to minimize, as much as possible, the potential for drug–drug interactions (DDI). Toward this end, the metabolic and transporter pathways involved in the disposition of a drug candidate (phenotyping) and potential for inhibition and induction of drug-metabolizing enzymes and transporters are evaluated in vitro. Such in vitro human data can be made available prior to human dosing and enable in vitro to in vivo-based predictions of clinical outcomes. Despite some success, however, in vitro systems are not dynamic and sometimes fail to predict drug–drug interactions for a variety of reasons. In comparison, relatively less effort has been made to evaluate predictions based on data derived from in vivo animal models. This chapter will attempt to summarize different examples from the literature where animal models have been used to predict cytochrome P450 3A (CYP3A)- and P-glycoprotein-based DDI. When employing data from animal models one needs to be aware of species differences in enzyme- and transporter-activity leading to differences in pharmacokinetics, clearance pathways as well as species differences in selectivity and affinity of probe substrates and inhibitors. Because of these differences, in vivo animal studies alone, cannot be predictive of human DDI. Despite these caveats, the information obtained from validated in vivo animal models may prove useful when used in conjunction with in vitro–in vivo extrapolation methods. Such an integrated data set can be used to select drug candidates with a reduced DDI potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boni JP, Leister C, Burns J, Hug B (2008) Differential effects of ketoconazole on exposure to temsirolimus following intravenous infusion of temsirolimus. Br J Cancer 98:1797–1802

    Article  CAS  PubMed  Google Scholar 

  2. Yildirim Y, Ozyilkan O, Akcali Z, Basturk B (2006) Drug interaction between capecitabine and warfarin: a case report and review of the literature. Int J Clin Pharmacol Ther 44:80–82

    CAS  PubMed  Google Scholar 

  3. Bailey DG, Bend JR, Arnold JM, Tran LT, Spence JD (1996) Erythromycin-felodipine interaction: magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 60:25–33

    Article  CAS  PubMed  Google Scholar 

  4. Alfaro CL (2001) Emerging role of drug interaction studies in drug development: the good, the bad, and the unknown. Psychopharmacol Bull 35:80–93

    CAS  PubMed  Google Scholar 

  5. Jones PH, Davidson MH (2005) Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol 95:120–122

    Article  CAS  PubMed  Google Scholar 

  6. Kind AH, Zakowski LJ, McBride PE (2002) Rhabdomyolysis from the combination of a statin and gemfibrozil: an uncommon but serious adverse reaction. WMJ 101:53–56

    PubMed  Google Scholar 

  7. Emoto C, Murase S, Iwasaki K (2006) Approach to the prediction of the contribution of major cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage. Xenobiotica 36:671–683

    Article  CAS  PubMed  Google Scholar 

  8. Williams JA, Bauman J, Cai H et al (2005) In vitro ADME phenotyping in drug discovery: current challenges and future solutions. Curr Opin Drug Discov Devel 8:78–88

    CAS  PubMed  Google Scholar 

  9. Dambach DM, Andrews BA, Moulin F (2005) New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol Pathol 33:17–26

    Article  CAS  PubMed  Google Scholar 

  10. Hutzler M, Messing DM, Wienkers LC (2005) Predicting drug–drug interactions in drug discovery: where are we now and where are we going? Curr Opin Drug Discov Devel 8:51–58

    CAS  PubMed  Google Scholar 

  11. Kim MJ, Kim H, Cha IJ et al (2005) High-throughput screening of inhibitory potential of nine cytochrome P450 enzymes in vitro using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 19:2651–2658

    Article  CAS  PubMed  Google Scholar 

  12. Persson KP, Ekehed S, Otter C et al (2006) Evaluation of human liver slices and reporter gene assays as systems for predicting the cytochrome P450 induction potential of drugs in vivo in humans. Pharm Res 23:56–69

    Article  CAS  PubMed  Google Scholar 

  13. Balimane PV, Patel K, Marino A, Chong S (2004) Utility of 96 well Caco-2 cell system for increased throughput of P-gp screening in drug discovery. Eur J Pharm Biopharm 58:99–105

    Article  CAS  PubMed  Google Scholar 

  14. Stouch TR, Gudmundsson O (2002) Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev 54:315–328

    Article  CAS  PubMed  Google Scholar 

  15. Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277

    Article  CAS  PubMed  Google Scholar 

  16. Yu DK (1999) The contribution of P-glycoprotein to pharmacokinetic drug–drug interactions. J Clin Pharmacol 39:1203–1211

    Article  CAS  PubMed  Google Scholar 

  17. Aszalos A (2007) Drug–drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) II. Clinical aspects. Drug Discov Today 12:838–843

    Article  CAS  PubMed  Google Scholar 

  18. Aszalos A (2007) Drug–drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) I. Preclinical aspects. Drug Discov Today 12:833–837

    Article  CAS  PubMed  Google Scholar 

  19. Hara Y, Nakajima M, Miyamoto KI, Yokoi T (2005) Inhibitory effects of psychotropic drugs on mexiletine metabolism in human liver microsomes: prediction of in vivo drug interactions. Xenobiotica 35:549–560

    Article  CAS  PubMed  Google Scholar 

  20. Kanamitsu S, Ito K, Sugiyama Y (2000) Quantitative prediction of in vivo drug–drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm Res 17:336–343

    Article  CAS  PubMed  Google Scholar 

  21. Bodin K, Bretillon L, Aden Y et al (2001) Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterol in humans: evidence for involvement of cytochrome p450 3A4. J Biol Chem 276:38685–38689

    Article  CAS  PubMed  Google Scholar 

  22. Galteau MM, Shamsa F (2003) Urinary 6beta-hydroxycortisol: a validated test for evaluating drug induction or drug inhibition mediated through CYP3A in humans and in animals. Eur J Clin Pharmacol 59:713–733

    Article  CAS  PubMed  Google Scholar 

  23. Kanebratt K, Diczfalusy U, Backstrom T et al (2008) Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol. Clin Pharmacol Ther 84:589–594

    Article  CAS  PubMed  Google Scholar 

  24. Link B, Haschke M, Grignaschi N et al (2008) Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol 66:473–484

    Article  CAS  PubMed  Google Scholar 

  25. Guengerich FP (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39:1–17

    Article  CAS  PubMed  Google Scholar 

  26. Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG (2007) Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 39:699–721

    Article  CAS  PubMed  Google Scholar 

  27. Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310–322

    Article  CAS  PubMed  Google Scholar 

  28. Wacher VJ, Silverman JA, Zhang Y, Benet LZ (1998) Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 87:1322–1330

    Article  CAS  PubMed  Google Scholar 

  29. Kuroha M, Azumano A, Kuze Y, Shimoda M, Kokue E (2002) Effect of multiple dosing of ketoconazole on pharmacokinetics of midazolam, a cytochrome P450 P450 3A substrate in beagle dogs. Drug Metab Dispos 30:63–68

    Article  CAS  PubMed  Google Scholar 

  30. Kuroha M, Kayaba H, Kishimoto S et al (2002) Effect of oral ketoconazole on first-pass effect of nifedipine after oral administration in dogs. J Pharm Sci 91:868–873

    Article  CAS  PubMed  Google Scholar 

  31. Sinko PJ, Kunta JR, Usansky HH, Perry BA (2004) Differentiation of gut and hepatic first pass metabolism and secretion of saquinavir in ported rabbits. J Pharmacol Exp Ther 310:359–366

    Article  CAS  PubMed  Google Scholar 

  32. Gorski JC, Jones DR, Haehner-Daniels BD et al (1998) The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 64:133–143

    Article  CAS  PubMed  Google Scholar 

  33. Thummel KE, Shen DD, Podoll TD et al (1994) Use of midazolam as a human cytochrome P450 3A probe: I. In vitro–in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 271:549–556

    CAS  PubMed  Google Scholar 

  34. Wandel C, Bocker RH, Bohrer H et al (1998) Relationship between hepatic cytochrome P450 3A content and activity and the disposition of midazolam administered orally. Drug Metab Dispos 26:110–114

    CAS  PubMed  Google Scholar 

  35. Lam YW, Alfaro CL, Ereshefsky L, Miller M (2003) Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol 43:1274–1282

    Article  CAS  PubMed  Google Scholar 

  36. Pea F, Furlanut M (2001) Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet 40:833–868

    Article  CAS  PubMed  Google Scholar 

  37. Marathe PH, Rodrigues AD (2006) In vivo animal models for investigating potential CYP3A- and Pgp-mediated drug–drug interactions. Curr Drug Metab 7:687–704

    Article  CAS  PubMed  Google Scholar 

  38. von Moltke LL, Granda BW, Grassi JM et al (2004) Interaction of triazolam and ketoconazole in P-glycoprotein-deficient mice. Drug Metab Dispos 32:800–804

    Article  Google Scholar 

  39. Granvil CP, Yu AM, Elizondo G et al (2003) Expression of the human CYP3A4 gene in the small intestine of transgenic mice: In vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos 31:548–558

    Article  CAS  PubMed  Google Scholar 

  40. Kotegawa T, Laurijssens BE, von Moltke LL et al (2002) In vitro, pharmacokinetics, and pharmacodynamic interactions of ketoconazole and midozolam in the rat. J Pharmacol Exp Ther 302:1228–1237

    Article  CAS  PubMed  Google Scholar 

  41. Tsunoda SM, Velez RL, von Moltke LL, Greenblatt DJ (1999) Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 66:461–471

    Article  CAS  PubMed  Google Scholar 

  42. Kanazu T, Okamura N, Yamaguchi Y, Baba T, Koike M (2005) Assessment of the hepatic and intestinal first-pass metabolism of midazolam in a CYP3A drug–drug interaction model rats. Xenobiotica 35:305–317

    Article  CAS  PubMed  Google Scholar 

  43. Kanazu T, Yamaguchi Y, Okamura N, Baba T, Koike M (2004) Model for the drug–drug interaction responsible for CYP3A enzyme inhibition. I: evaluation of cynomolgus monkeys as surrogates for humans. Xenobiotica 34:391–402

    Article  CAS  PubMed  Google Scholar 

  44. Yamano K, Yamanoto K, Kotaki K, Sawada Y, Iga T (1999) Quantitative prediction of metabolic inhibition of midazolam by itraconazole and ketoconazole in rats: implication of concentrative uptake of inhibitors of into liver. Drug Metab Dispos 27:395–402

    CAS  PubMed  Google Scholar 

  45. Kishimoto W, Takano J, Senda C et al (2000) Quantitative prediction of in vivo drug interactions between nevirapine and antifungal agents from in vitro data in rats. Biol Pharm Bull 23:1027–1032

    CAS  PubMed  Google Scholar 

  46. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y (1998) Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 38:461–499

    Article  CAS  PubMed  Google Scholar 

  47. Mandlekar SV, Rose AV, Cornelius G et al (2007) Development of an in vivo rat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 37: 923–942

    Article  CAS  PubMed  Google Scholar 

  48. Igarashi T, Sakuma T, Isogai M, Nagata R, Kamataki T (1997) Marmoset liver cytochrome P450s: study for expression and molecular cloning of their cDNAs. Arch Biochem Biophys 339:85–91

    Article  CAS  PubMed  Google Scholar 

  49. Mankowski DC, Laddison KJ, Christopherson PA et al (1999) Molecular cloning, expression, and characterization of CYP2D17 from cynomolgus monkey liver. Arch Biochem Biophys 372:189–196

    Article  CAS  PubMed  Google Scholar 

  50. Komura H, Iwaki M (2008) Species differences in in vitro and in vivo small intestinal metabolism of CYP3A substrates. J Pharm Sci 97:1775–1800

    Article  CAS  PubMed  Google Scholar 

  51. Ogasawara A, Kume T, Kazama E (2007) Effect of oral ketoconazole on intestinal first-pass effect of midazolam and fexofenadine in cynomolgus monkeys. Drug Metab Dispos 35:410–418

    Article  CAS  PubMed  Google Scholar 

  52. Schinkel AH, Smit JJ, van Tellingen O et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  53. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P (1995) Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 96:1698–1705

    Article  CAS  PubMed  Google Scholar 

  54. Schuetz EG, Umbenhauer DR, Yasuda K et al (2000) Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol Pharmacol 57:188–197

    CAS  PubMed  Google Scholar 

  55. Bardelmeijer HA, Ouwehand M, Beijnen JH, Schellens JHM, van Tellingen O (2004) Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest New Drugs 22:219–229

    Article  CAS  PubMed  Google Scholar 

  56. Dai H, Marbach P, Lemaire M, Hayes M, Elmquish WF (2003) Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 304:1085–1092

    Article  CAS  PubMed  Google Scholar 

  57. Salama NN, Kelly EJ, Bui T, Ho RJ (2005) The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice. J Pharm Sci 94:1216–1225

    Article  CAS  PubMed  Google Scholar 

  58. Dantzig AH, Shepard RL, Law KL et al (1999) Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther 290:854–862

    CAS  PubMed  Google Scholar 

  59. Shepard RL, Cao J, Starling JJ, Dantzig AH (2003) Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer 103:121–125

    Article  CAS  PubMed  Google Scholar 

  60. Kemper EM, Cleypool C, Boogerd W, Beijnen JH, van Tellingen O (2004) The influence of the P-glycoprotein inhibitor zosuquidar trihydrochloride (LY335979) on the brain penetration of paclitaxel in mice. Cancer Chemother Pharmacol 53:173–178

    Article  CAS  PubMed  Google Scholar 

  61. Yumoto R, Murakami T, Sanemasa M et al (2001) Pharmacokinetic interaction of cytochrome P450 3A-related compounds with rhodamine 123, a P-glycoprotein substrate, in rats pretreated with dexamethasone. Drug Metab Dispos 29:145–151

    CAS  PubMed  Google Scholar 

  62. Ward KW, Proksch JW, Levy MA, Smith BR (2001) Development of an in vivo preclinical screen model to estimate absorption and bioavailability of xenobiotics. Drug Metab Dispos 29:82–88

    CAS  PubMed  Google Scholar 

  63. Ward KW, Stelman GJ, Morgan JA et al (2004) Development of an in vivo preclinical screen model to estimate absorption and first-pass hepatic extraction of xenobiotics. II. Use of ketoconazole to identify P-glycoprotein/CYP3A-limited bioavailability in the moneky. Drug Metab Dispos 32:172–177

    Article  CAS  PubMed  Google Scholar 

  64. Kim WY, Benet LZ (2004) P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res 21:1284–1293

    Article  CAS  PubMed  Google Scholar 

  65. Brimer C, Dalton JT, Zhu Z et al (2000) Creation of polarized cells coexpressing CYP3A4, NADPH cytochrome P450 reductase and MDR1/P-glycoprotein. Pharm Res 17:803–810

    Article  CAS  PubMed  Google Scholar 

  66. Cummins CL, Jacobsen W, Benet LZ (2002) Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 300:1036–1045

    Article  CAS  PubMed  Google Scholar 

  67. Kivisto KT, Niemi M, Fromm MF (2004) Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam Clin Pharmacol 18:621–626

    Article  PubMed  Google Scholar 

  68. Lin JH, Chiba M, Chen IW et al (1999) Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P4503A and P-glycoprotein induction. Drug Metab Dispos 27:1187–1193

    CAS  PubMed  Google Scholar 

  69. Cummins CL, Samphati L, Reid MJ, Benet LZ (2003) In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther 305:306–314

    Article  CAS  PubMed  Google Scholar 

  70. Venkatakrishnan K, von Moltke LL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 38:111–180

    Article  CAS  PubMed  Google Scholar 

  71. Hichiya H, Takemi C, Tsuzuki D et al (2002) Complementary DNA cloning and characterization of cytochrome P450 2D29 from Japanese monkey liver. Biochem Pharmacol 64:1101–1110

    Article  CAS  PubMed  Google Scholar 

  72. Zhang L, Fitzloff JF, Engel LC, Cook CS (2001) Species difference in stereoselective involvement of CYP3A in the mono-N-dealkylation of disopyramide. Xenobiotica 31:73–83

    Article  CAS  PubMed  Google Scholar 

  73. Perloff MD, von Moltke LL, Court MH et al (2000) Midazolam and triazolam biotransformation in mouse and human liver microsomes: relative contribution on CYP3A and CYP2C isoforms. J Pharmacol Exp Ther 292:618–628

    CAS  PubMed  Google Scholar 

  74. Bachmann KA, Lewis JD (2005) Predicting inhibitory drug–drug interactions and evaluating drug interaction reports using inhibition constants. Ann Pharmacother 39:1064–1072

    Article  CAS  PubMed  Google Scholar 

  75. Ito K, Iwatsubo T, Kanamitsu S et al (1998) Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol Rev 50:387–412

    CAS  PubMed  Google Scholar 

  76. Robert J, Jarry C (2003) Multidrug resistance reversal agents. J Med Chem 46:4805–4817

    Article  CAS  PubMed  Google Scholar 

  77. Wallstab A, Koester M, Bohme M, Keppler D (1999) Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918. Br J Cancer 79:1053–1060

    Article  CAS  PubMed  Google Scholar 

  78. Ward KW, Azzarano LM (2004) Preclinical pharmacokinetic properties of the P-glycop-rotein inhibitor GF120918A (HCl salt of GF120918, 9, 10-dihydro-5-methoxy-9-oxo-N-[4-[2-(1, 2, 3, 4-tetrahydro-6, 7-dimethoxy-2-i soquinolinyl)ethyl]phenyl]-4-acridinecarbo-xamide) in the mouse, rat, dog, and monkey. J Pharmacol Exp Ther 310:703–709

    Article  CAS  PubMed  Google Scholar 

  79. Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer 83:366–374

    Article  CAS  PubMed  Google Scholar 

  80. Jonker JW, Smit JW, Brinkhuis RF et al (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656

    Article  CAS  PubMed  Google Scholar 

  81. Hoffmaster KA, Zamek-Gliszczynski MJ, Pollack GM, Brouwer KLR (2004) Hepatobiliary disposition of the metabolically stable opioid peptide [D-Pen2, D-Pen5]-enkaphalin (DPDPE): pharmacokinetic consequences of the interplay between multiple transport systems. J Pharmacol Exp Ther 311:1203–1210

    Article  CAS  PubMed  Google Scholar 

  82. Dai G, Wan YJ (2005) Animal models of xenobiotic receptors. Curr Drug Metab 6:341–355

    Article  CAS  PubMed  Google Scholar 

  83. Robertson GR, Field J, Goodwin B et al (2003) Transgenic mouse models of human CYP3A4 gene regulation. Mol Pharmacol 64:42–50

    Article  CAS  PubMed  Google Scholar 

  84. Xie W, Yeuh MF, Radominska-Pandya A et al (2003) Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci USA 100:4150–4155

    Article  CAS  PubMed  Google Scholar 

  85. Katoh M, Matsui T, Nakajima M et al (2004) Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab Dispos 32:1402–1410

    Article  CAS  PubMed  Google Scholar 

  86. van Herwaarden AE, Wagenaar E, van der Kruijssen CM et al (2007) Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest 117:3583–3592

    Article  PubMed  Google Scholar 

  87. Gonzalez FJ (2004) Cytochrome P450 humanised mice. Hum Genomics 1:300–306

    CAS  PubMed  Google Scholar 

  88. Gonzalez FJ (2007) CYP3A4 and pregnane X receptor humanized mice. J Biochem Mol Toxicol 21:158–162

    Article  CAS  PubMed  Google Scholar 

  89. Gonzalez FJ, Cheung C (2008) Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther 327:288–299

    Article  PubMed  Google Scholar 

  90. Cozzi J, Fraichard A, Thiam K (2008) Use of genetically modified rat models for translational medicine. Drug Discov Today 13:488–494

    Article  CAS  PubMed  Google Scholar 

  91. Lin JH (2008) Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab 9:419–438

    Article  CAS  PubMed  Google Scholar 

  92. van Waterschoot RA, van Herwaarden AE, Lagas JS et al (2008) Midazolam metabolism in cytochrome P450 3A knockout mice can be attributed to up-regulated CYP2C enzymes. Mol Pharmacol 73:1029–1036

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punit H. Marathe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marathe, P.H., Rodrigues, A.D. (2010). Examination of CYP3A and P-Glycoprotein-Mediated Drug–Drug Interactions Using Animal Models. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics