Skip to main content

Imaging and Analysis of Three-Dimensional Cell Culture Models

  • Protocol
  • First Online:
Live Cell Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 591))

Abstract

Three-dimensional (3D) cell cultures are important tools in cell biology research and tissue engineering because they more closely resemble the architectural microenvironment of natural tissue, compared to standard two-dimensional cultures. Microscopy techniques that function well for thin, optically transparent cultures, however, are poorly suited for imaging 3D cell cultures. Three-dimensional cultures may be thick and highly scattering, preventing light from penetrating without significant distortion. Techniques that can image thicker biological specimens at high resolution include confocal microscopy, multiphoton microscopy, and optical coherence tomography. In this chapter, these three imaging modalities are described and demonstrated in the assessment of functional and structural features of 3D chitosin scaffolds, 3D micro-topographic substrates from poly-dimethyl siloxane molds, and 3D Matrigel cultures. Using these techniques, dynamic changes to cells in 3D microenvironments can be non-destructively assessed repeatedly over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky, C. and Bissell, M. J. (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245.

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs, E., Tumbar, T. and Guasch, G. (2004) Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778.

    Article  CAS  PubMed  Google Scholar 

  3. Friedrich, M. J. (2003) Studying cancer in 3 dimensions: 3D models foster new insights into tumorigenesis. J. Am. Med. Assoc. 290, 1977–1979.

    Article  CAS  Google Scholar 

  4. Lee, J., Cuddihy, M. J. and Kotov, N. A. (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng. Part B 14, 61–86.

    Article  CAS  Google Scholar 

  5. Pawley, J. (ed.) (1995) Handbook of Biological Confocal Microscopy. Springer, New York, NY.

    Google Scholar 

  6. Helmchen, F. and Denk, W. (2005) Deep tissue two-photon microscopy. Nat. Methods 2, 932–940.

    Article  CAS  PubMed  Google Scholar 

  7. Schmitt, J. M. (1999) Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215.

    Article  CAS  Google Scholar 

  8. Rajadhyaksha, M., Grossman, M., Esterowitz, D., Webb, R. H. and Anderson, R. R., (1995) In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J. Invest. Dermatol. 104, 946–952.

    Article  CAS  PubMed  Google Scholar 

  9. Schmitt, J. M., Knüttel, A. and Yadlowsky, M. (1994) Confocal microscopy in turbid media. J. Opt. Soc. Am. A 11, 2226–2235.

    Article  CAS  Google Scholar 

  10. Smithpeter, C. L., Dunn, A. K., Welch, A. J. and Richards-Kortum, R. (1998) Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37, 2749–2754.

    Article  CAS  PubMed  Google Scholar 

  11. Centonze, V. E. and White, J. G. (1998) Multiphoton excitation provides optical sectionsfrom deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024.

    Article  CAS  PubMed  Google Scholar 

  12. Rubart, M. (2004) Two-photon microscopy of cells and tissue. Circ. Res. 95, 1154–1166.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A. and Fujimoto, J. G. (1991) Optical coherence tomography. Science 254, 1178–1181.

    Article  CAS  PubMed  Google Scholar 

  14. Leitgeb, R. Hitzenberger, C. K. and Fercher, A. F. (2003) Performance of Fourier-domain vs. time-domain optical coherence tomography. Opt. Express 11, 889–894.

    Article  CAS  PubMed  Google Scholar 

  15. Nassif, N., Cense, B., Park, B. H., Yun, S. H., Chen, T. C., Bouma, B. E., Tearney, G. J. and de Boer, J. F. (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29, 480–482.

    Article  PubMed  Google Scholar 

  16. Huang, S. W., Aguirre, A. D., Huber, R. A., Adler, D. C. and Fujimoto, J. G. (2007) Swept source optical coherence microscopy using a Fourier domain mode-locked laser. Opt. Express 15, 6210–6217.

    Article  PubMed  Google Scholar 

  17. Welzel, J. (2008) Optical coherence tomography in dermatology: a review. Skin Res. Tech. 7, 1–9.

    Article  Google Scholar 

  18. Aguirre, A. D., Hsiung, P., Ko, T. H., Hartl, I. and Fujimoto, J. G. (2003) High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett. 28, 2064–2066.

    Article  CAS  PubMed  Google Scholar 

  19. Vinegoni, C., Ralston, T., Tan, W., Luo, W., Marks, D. L. and Boppart, S. A. (2006) Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Appl. Phys. Lett. 88, 053901.

    Article  Google Scholar 

  20. Tang, S., Sun, C. H., Krasieva, T. B., Chen, Z. and Tromberg, B. J. (2007) Imaging subcellular scattering contrast by using combined optical coherence and multiphoton microscopy. Opt. Lett. 32, 503–505.

    Article  PubMed  Google Scholar 

  21. Tang, S., Krasieva, T. B., Chen, Z. and Tromberg, B. J. (2006) Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source. J. Biomed. Opt. 11, 020502.

    Article  PubMed  Google Scholar 

  22. Beaurepaire, E., Moreaux, L., Amblard, F. and Mertz, J. (1999) Combined scanning optical coherence and two-photon excited fluorescence microscopy. Opt. Lett. 24, 969–971.

    Article  CAS  PubMed  Google Scholar 

  23. Dunkers, J., Cicerone, M. and Washburn, N. (2003) Collinear optical coherence and confocal fluorescence microscopies for tissue engineering. Opt. Express 11, 3074–3079.

    Article  CAS  PubMed  Google Scholar 

  24. Morgner, U., Drexler, W., Kärtner, F. X., Li, X. D., Pitris, C., Ippen, E. P., and Fujimoto, J. G. (2000) Spectroscopic optical coherence tomography. Opt. Lett. 25, 111–113.

    Article  CAS  PubMed  Google Scholar 

  25. Xu, C., Vinegoni, C., Ralston, T., Luo, W., Tan, W. and Boppart, S. (2006) Spectroscopic spectral-domain optical coherence microscopy. Opt. Lett. 31, 1079–1081.

    Article  PubMed  Google Scholar 

  26. Schmitt, J. (1998) OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3, 199–211.

    Article  CAS  PubMed  Google Scholar 

  27. Liang, X., Oldenburg, A. L. Crecea, V., Chaney, E. J. and Boppart, S. A. (2008) Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt. Express 16, 11052–11065.

    Article  PubMed  Google Scholar 

  28. Milner, T. E., Srinivas, S., Wang, X., Malekafzali, A., Van Gemort, M. J., Nelson, J. S., Chen, Z. (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 22, 1119–1121.

    Article  CAS  PubMed  Google Scholar 

  29. Tan, W., Sendemir-Urkmez, A., Fahrner, L. J., Jamison, R., Leckband, D. and Boppart, S. A. (2004) Structural and functional optical imaging of three-dimensional engineered tissue development. Tissue Eng., 10, 1747–1756.

    Article  PubMed  Google Scholar 

  30. Tan, W., Oldenburg, A. L., Norman, J. J., Desai, T. A. and Boppart, S. A. (2006) Optical coherence tomography of cell dynamics in three-dimensional tissue models. Opt. Express 14, 7159–7171.

    Article  PubMed  Google Scholar 

  31. Tan, W., Vinegoni, C., Norman, J. J., Desai, T. A. and Boppart, S. A. (2007) Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microsc. Res. Tech. 70, 361–371

    Article  PubMed  Google Scholar 

  32. Squirrell, J. M., Wokosin, D. L., White, J. G. and Bavister, B. D., (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17, 763–767.

    Article  CAS  PubMed  Google Scholar 

  33. Tirlapur, U. K., König, K., Peuckert, C., Krieg, R. and Halbhuber, K. J. (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp. Cell. Res. 263, 88–97.

    Article  CAS  PubMed  Google Scholar 

  34. Sun, C., Chen, C., Chu, S., Tsai, T., Chen, Y. and Lin, B. (2003) Multiharmonic-generation biopsy of skin. Opt. Lett. 28, 2488–2490.

    Article  PubMed  Google Scholar 

  35. Norman, J. J. and Desai, T. A. (2005) Control of cellular organization in three dimensions using a microfabricated polydimethylsiloxane-collagen composite tissue scaffold. Tissue Eng. 11, 378–386.

    Article  PubMed  Google Scholar 

  36. Bestvater, F., Spiess, E., Stobrawa, G., Hacker, M., Feurer, T., Porwol, T., Berchner-Pfannschmidt, U., Wotzlaw, C. and Acker, H. (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J. Microsc. 208, 108–115.

    Article  CAS  PubMed  Google Scholar 

  37. Zipfel, W. R., Williams, R. M., Christie, R., Nikitin, A. Y., Hyman, B. T. and Webb, W. W. (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. PNAS 100, 7075–7080.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Graf, B.W., Boppart, S.A. (2010). Imaging and Analysis of Three-Dimensional Cell Culture Models. In: Papkovsky, D. (eds) Live Cell Imaging. Methods in Molecular Biology, vol 591. Humana Press. https://doi.org/10.1007/978-1-60761-404-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-404-3_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-403-6

  • Online ISBN: 978-1-60761-404-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics