Skip to main content

Host Resistance Assays Including Bacterial Challenge Models

  • Protocol
  • First Online:
Immunotoxicity Testing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 598))

Abstract

Immunotoxicity testing is used to provide safety assessment with the major objective being the avoidance of unacceptable risk of infectious or neoplastic disease. To this end, immunotoxicity testing has employed a variety of host resistance challenge models for measuring both host resistance to disease as well as immune function. This chapter provides an overview of those viral, bacterial, fungal, and parasitic host resistance models that are most commonly used in safety assessment. It also describes in more detail the bacterial challenge models that are employed to address specific host resistance and immune function issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burleson GR (1995) Influenza virus host resistance model for assessment of immunotoxicity, immunostimulation, and antiviral compounds, Chapter 14. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology, vol 2. Wiley, New York, pp 181–202

    Google Scholar 

  2. Selgrade MJK, Daniels MJ (1995) Host resistance models: murine cytomegalovirus, Chapter 15. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology, vol 2. Wiley, New York, pp 203–219

    Google Scholar 

  3. Lebrec H, Burleson GR (1994) Influenza virus host resistance models in mice and rats: utilization for immune function assessment and immunotoxicology. Toxicology 91:179–188

    Article  CAS  PubMed  Google Scholar 

  4. Burleson GR (1996) Pulmonary immunocompetence and pulmonary immunotoxicology, Chapter 7. In: Smialowicz R, Holsapple MP (eds) Experimental immunotoxicology. CRC, Boca Raton, FL, pp 113–135

    Google Scholar 

  5. Luster MI, Munson AE, Thomas PT, Holsapple MP, Fenters JD, White KL Jr, Lauer LD, Germolec DR, Rosenthal GJ, Dean JH (1988) Development of a testing battery to assess chemical-induced immunotoxicity: National Toxicology Program’s guidelines for immunotoxicity evaluation in mice. Fundam Appl Toxicol 10(1):2–19

    Article  CAS  PubMed  Google Scholar 

  6. Luster MI, Pait DG, Portier C, Rosenthal GJ, Germolec DR, Comment CE, Munson AE, White K, Pollock P (1992) Qualitative and quantitative experimental models to aid in risk assessment for immunotoxicology. Toxicol Lett 64–65:71–78

    Article  PubMed  Google Scholar 

  7. Luster MI, Portier C, Pait DG, White KL, Gennings C, Munson AE, Rosenthal GJ (1992) Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fundam Appl Toxicol 18(2):200–210

    Article  CAS  PubMed  Google Scholar 

  8. Luster MI, Portier C, Pait DG, Rosenthal GJ, Germolec DR, Corsini E, Blalock BL, Pollock P, Kouchi Y, Craig W, White KL, Munson AE, Comment CE (1993) Risk assessment in immunotoxicology. II. Relationships between immune and host resistance tests. Fundam Appl Toxicol 21(1):71–82

    Article  CAS  PubMed  Google Scholar 

  9. Luster MI, Portier C, Pait DG, Rosenthal GJ, Germolec DR (1995) Immunotoxicology and risk assessment, Chapter 5. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology, vol 1. Wiley, New York, pp 51–68

    Google Scholar 

  10. Germolec DR (2004) Sensitivity and predictivity in immunotoxicity testing: immune endpoints and disease resistance. Toxicol Lett 149:109–114

    Article  CAS  PubMed  Google Scholar 

  11. Burleson GR (2000) Models of respiratory immunotoxicology and host resistance. Immunopharmacology 48:315–318

    Article  CAS  PubMed  Google Scholar 

  12. Burleson GR, Burleson FG (2007) Testing human biologicals in animal host resistance models. J Immunotoxicol 5:1–9

    Google Scholar 

  13. Burleson GR, Burleson FG (2007) Influenza virus host resistance model. Methods 41:31–37

    Article  CAS  PubMed  Google Scholar 

  14. Burleson GR, Burleson FG (2008) In: Herzyk DJ, Bussiere JL (eds), Immunotoxicology strategies for pharmaceutical safety assessment. Wiley, Hoboken, NJ, pp 163–177, Chapter 5.1

    Google Scholar 

  15. Burleson GR (2008) MCMV host resistance model to detect latent viral reactivation immunotoxicity. Int J Toxicol 27(6):417

    Google Scholar 

  16. Herzyk DJ, Gore ER, Polsky R, Nadwodny KL, Maier CC, Liu S, Hart TK, Harmsen AG, Bugelski PJ (2001) Immunomodulatory effects of anti-CD4 antibody in host resistance against infections and tumors in human CD4 transgenic mice. Infect Immun 69(2):1032–1043

    Article  CAS  PubMed  Google Scholar 

  17. Luebke RW (1995) Assessment of host resistance to infection with rodent malaria. In: Burleson GR, Dean JH, Munson AE (eds). Wiley, New York, pp 221–242, vol 2, Chapter 16

    Google Scholar 

  18. Van Loveren H, Luebke RW, Vos JG (1995) Assessment of immunotoxicity with the parasitic infection model Trichinella spiralis. In: Burleson GR, Dean JH, Munson AE (eds), Wiley, New York, pp 243–271, vol 2, Chapter 17

    Google Scholar 

  19. McCay JA (1995) Syngeneic tumor cell models: B16F10 and PYB6. In: Burleson GR, Dean JH, Munson, AE (eds), Methods in immunotoxicology, vol 2. Wiley, New York, pp 143–157, Chapter 11

    Google Scholar 

  20. Zhu Y, Herlaar E, Masuda ES, Burleson GR, Nelson AJ, Grossbard EB, Clemens GR (2007) Immunotoxicity assessment for the novel spleen tyrosine kinase inhibitor R406. Toxicol Appl Pharmacol 221:268–277

    Article  CAS  PubMed  Google Scholar 

  21. Steele TD, Geng W, Burleson F, Burleson G (2005) Enfuvirtide does not impair host resistance to infection in rats. Toxicologist 84:178

    Google Scholar 

  22. Gilmour MI, Park P, Selgrade MK (1993) Ozone-enhanced pulmonary infection with Streptococcus zooepidemicus in mice. Am Rev Respir Dis 147:753–760

    CAS  PubMed  Google Scholar 

  23. Gilmour MI, Selgrade MK (1993) A comparison of the pulmonary defenses against streptococcal infection in rats and mice following O3 exposure: differences in disease susceptibility and neutrophil recruitment. Toxicol Appl Pharmacol 123:211–218

    Article  CAS  PubMed  Google Scholar 

  24. Komocsar W, Burleson G, Wierda D (2007) The optimization of an acute rat model to evaluate effects on innate immunity induced by anti-inflammatory agents. Toxicologist 96:357

    Google Scholar 

  25. Van der Poll T, Keogh CV, Buurman WA, Lowry SF (1997) Passive immunization­against tumor necrosis factor-a impairs host defense during pneumococcal pneumonia in mice. Am J Crit Care Med 155:603–608

    Google Scholar 

  26. Takashima K, Tateda K, Matsumoto T, Iizawa Y, Nakao M, Yamaguchi K (1997) Role of tumor necrosis factor alpha in pathogenesis of pneumococcal pneumonia in mice. Infect Immun 65:257–260

    CAS  PubMed  Google Scholar 

  27. Benton KA, VanCott JL, Briles DE (1998) Role of tumor necrosis factor alpha in the host response of mice to bacteremia caused by pneumolysin-deficient Streptococcus pneumoniae. Infect Immun 66(2):839–842

    CAS  PubMed  Google Scholar 

  28. O’Brien DP, Briles DE, Szalai AJ, Tu A-H, Sanz I, Nahm MH (1999) Tumor necrosis factor alpha I is important for survival from Streptococcus pneumoniae infections. Infect Immun 67(2):595–601

    PubMed  Google Scholar 

  29. Gosselin D, DeSanctis J, Boule M, Skamene E, Matouk C, Radzioch D (1995) Role of tumor necrosis factor alpha in innate resistance to mouse pulmonary infection with Pseudomonas aeruginosa. Infect Immun 63(9):3272–3273

    CAS  PubMed  Google Scholar 

  30. Mohan VP, Scanga CA, Keming Y, Scott HM, Tanaka KR, Tsang E, Tsai MC, Flynn JI, Chann J (2001) Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role of limiting pathology. Infect Immun 69(3):1847–1855

    Article  CAS  PubMed  Google Scholar 

  31. Mond JJ, Lees A, Snapper CM (1995) T cell-independent antigens type 2. Annu Rev Immunol 13:655–692

    Article  CAS  PubMed  Google Scholar 

  32. Amlot PL, Grennan D, Humphrey JH (1985) Splenic dependence of the antibody response to thymus-independent (TI-2) antigens. Eur J Immunol 15:508–512

    Article  CAS  PubMed  Google Scholar 

  33. Harms G, Hardonk MJ, Timens W (1996) In vitro complement-dependent binding and in vivo kinetics of pneumococcal polysaccharide TI-2 antigens in the rat spleen marginal zone and follicle. Infect Immun 64:4220–4225

    CAS  PubMed  Google Scholar 

  34. Guinamard R, Okigaki M, Schlessinger J, Ravetch JV (2000) Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 1:31–36

    CAS  PubMed  Google Scholar 

  35. Burleson FG (2008) Systemic Streptococcus pneumoniae host resistance model to evaluate marginal zone B (MZB) cell immunotoxicity. Int J Toxicol 27(6):416

    Google Scholar 

  36. Conlan JW, North RJ (1992) Monoclonal antibody NIMP-R10 directed against the CD11b chain of the type 3 complement receptor can substitute for monoclonal antibody 5C6 to exacerbate listeriosis by preventing the focusing of myelomonocytic cells at infectious foci in the liver. J Leukocyte Biol 52(1):130–132

    CAS  PubMed  Google Scholar 

  37. Rosen H, Gordon S, North RJ (1989) Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J Exp Med 170(1):27–37

    Article  CAS  PubMed  Google Scholar 

  38. Conlan JW, North RJ (1991) Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J Exp Med 174(3):741–744

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Janice Dietert for her editorial suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence G. Burleson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Burleson, F.G., Burleson, G.R. (2010). Host Resistance Assays Including Bacterial Challenge Models. In: Dietert, R. (eds) Immunotoxicity Testing. Methods in Molecular Biology™, vol 598. Humana Press. https://doi.org/10.1007/978-1-60761-401-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-401-2_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-400-5

  • Online ISBN: 978-1-60761-401-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics