Skip to main content

In vitro Footprinting of Promoter Regions Within Supercoiled Plasmid DNA

  • Protocol
  • First Online:
Drug-DNA Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 613))

Abstract

Polypurine/polypyrimidine (pPu/pPy) tracts, which exist in the promoter regions of many growth-related genes, have been proposed to be very dynamic in their conformation. In this chapter, we describe a detailed protocol for DNase I and S1 nuclease footprinting experiments with supercoiled plasmid DNA containing the promoter regions to probe whether there are conformational transitions to B-type DNA, melted DNA, and G-quadruplex structures within this tract. This is demonstrated with the proximal promoter region of the human vascular endothelial growth factor (VEGF) gene, which also contains multiple binding sites for Sp1 and Egr-1 transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy JG, Heywood SM (1987) A long polypyrimidine/polypurine tract induces an altered DNA conformation on the 3′ coding region of the adjacent myosin heavy chain gene. Nucleic Acids Res 15:8069-8085

    Article  CAS  PubMed  Google Scholar 

  2. Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D (1996) Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol Cell Biol 16:2656-2669

    CAS  PubMed  Google Scholar 

  3. Shi Q, Le X, Abbruzzese JL, Peng Z, Qian CN, Tang H et al (2001) Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 61:4143-4154

    CAS  PubMed  Google Scholar 

  4. Rustighi A, Tessari MA, Vascotto F, Sgarra R, Giancotti V, Manfioletti G (2002) A polypyrimidine/polypurine tract within the Hmga2 minimal promoter: a common feature of many growth-related genes. Biochemistry 41:1229-1240

    Article  CAS  PubMed  Google Scholar 

  5. Cogoi S, Xodo LE (2006) G-quadruplex formation within the promoter of the KRAS protooncogene and its effect on transcription. Nucleic Acids Res 34:2536-2549

    Article  CAS  PubMed  Google Scholar 

  6. De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005) Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochemistry 44:16341-16350

    Article  PubMed  Google Scholar 

  7. Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH (2007) Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J Am Chem Soc 129:10220-10228

    Article  CAS  PubMed  Google Scholar 

  8. Pullner A, Mautner J, Albert T, Eick D (1996) Nucleosomal structure of active and inactive c-myc genes. J Biol Chem 271:31452-31457

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Lin XH, Qiu QQ, Deuel TF (1992) Modulation of transcription of the platelet-derived growth factor A-chain gene by a promoter region sensitive to S1 nuclease. J Biol Chem 267:17022-17031

    CAS  PubMed  Google Scholar 

  10. Siebenlist U, Henninghausen L, Battey J, Leder P (1984) Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell 37:381-391

    Article  CAS  PubMed  Google Scholar 

  11. Evans T, Efstratiadis A (1986) Sequence-dependent S1 nuclease hypersensitivity of a heteronomous DNA duplex. J Biol Chem 261:14771-14780

    CAS  PubMed  Google Scholar 

  12. Benham CJ (1985) Theoretical analysis of conformational equilibria in superhelical DNA. Ann Rev Biophys Biophysical Chem 14:23-45

    Article  CAS  Google Scholar 

  13. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024-7027

    Article  CAS  PubMed  Google Scholar 

  14. Williams DL, Kowalski D (1993) Easily unwound DNA sequences and hairpin structures in the Epstein-Barr virus origin of plasmid replication. J Virol 67:2707-2715

    CAS  PubMed  Google Scholar 

  15. Kouzine F, Levens D (2007) Supercoil-driven DNA structures regulate genetic transactions. Front Biosci 12:4409-4423

    Article  CAS  PubMed  Google Scholar 

  16. Kouzine F, Sanford S, Elisha-Feil Z, Levens D (2008) The functional response of upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol 15:146-154

    Article  CAS  PubMed  Google Scholar 

  17. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15-18

    CAS  PubMed  Google Scholar 

  18. Sullivan DC, Bicknell R (2003) New molecular pathways in angiogenesis. Br J Cancer 89:228-231

    Article  CAS  PubMed  Google Scholar 

  19. Martiny-Baron G, Marme D (1995) VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol 6:675-680

    Article  CAS  PubMed  Google Scholar 

  20. Goodsell DS (2003) The molecular perspective: VEGF and angiogenesis. Stem Cells 21:118-119

    Article  PubMed  Google Scholar 

  21. Jain RK (2002) Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol 29:3-9

    CAS  PubMed  Google Scholar 

  22. Gunningham SP, Currie MJ, Han C, Turner K, Scott PA, Robinson BA et al (2001) Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res 61:3206-3211

    CAS  PubMed  Google Scholar 

  23. Schafer G, Cramer T, Suske G, Kemmner W, Wiedenmann B, Hocker M (2003) Oxidative stress regulates vascular endothelial growth factor-A gene transcription through Sp1- and Sp3-dependent activation of two proximal GC-rich promoter elements. J Biol Chem 278:8190-8198

    Article  PubMed  Google Scholar 

  24. Maeno T, Tanaka T, Sando Y, Suga T, Maeno Y, Nakagawa J et al (2002) Stimulation of vascular endothelial growth factor gene transcription by all trans retinoic acid through Sp1 and Sp3 sites in human bronchioloalveolar carcinoma cells. Am J Respir Cell Mol Biol 26:246-253

    CAS  PubMed  Google Scholar 

  25. Chen H, Ye D, Xie X, Chen B, Lu W (2004) VEGF, VEGFRs expressions and activated STATs in ovarian epithelial carcinoma. Gynecol Oncol 94:630-635

    Article  CAS  PubMed  Google Scholar 

  26. Pal S, Datta K, Khosravi-Far R, Mukhopadhyay D (2001) Role of protein kinase Czeta in Ras-mediated transcriptional activation of vascular permeability factor/vascular endothelial growth factor expression. J Biol Chem 276:2395-2403

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka T, Kanai H, Sekiguchi K, Aihara Y, Yokoyama T, Arai M et al (2000) Induction of VEGF gene transcription by IL-1 beta is mediated through stress-activated MAP kinases and Sp1 sites in cardiac myocytes. J Mol Cell Cardiol 32:1955-1967

    Article  CAS  PubMed  Google Scholar 

  28. Finkenzeller G, Sparacio A, Technau A, Marme D, Siemeister G (1997) Sp1 recognition sites in the proximal promoter of the human vascular endothelial growth factor gene are essential for platelet-derived growth factor-induced gene expression. Oncogene 15:669-676

    Article  CAS  PubMed  Google Scholar 

  29. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604-4613

    CAS  PubMed  Google Scholar 

  30. Sun D, Guo K, Rusche JJ, Hurley LH (2005) Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res 33:6070-6080

    Article  CAS  PubMed  Google Scholar 

  31. Saluz HP, Jost JP (1993) Approaches to characterize protein-DNA interactions in vivo. Crit Rev Eukaryot Gene Expr 3:1-29

    PubMed  Google Scholar 

  32. Dabrowiak JC, Goodisman J, Ward B (1997) Quantitative DNA footprinting. Methods Mol Biol 90:23-42

    CAS  PubMed  Google Scholar 

  33. Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH (2002) Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc 124:2098-2099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institutes of Health (CA109069). We are grateful to Drs. Allison Hays and Keith Fox for proofreading and editing the final version of the manuscript and figures. We also thank Drs Keping Xie and Kazuo Shin-ya for providing pGL3-V789 and telomestatin, respectively, for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daekyu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sun, D. (2010). In vitro Footprinting of Promoter Regions Within Supercoiled Plasmid DNA. In: Fox, K. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology, vol 613. Humana Press. https://doi.org/10.1007/978-1-60327-418-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-418-0_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-417-3

  • Online ISBN: 978-1-60327-418-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics