Skip to main content

Generation of General and Tissue-Specific Gene Knockout Mouse Models

  • Protocol
  • First Online:
Lipoproteins and Cardiovascular Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1027))

Abstract

Knockout technology has established the functions of many genes affecting plasma lipid and lipoprotein levels and the development of atherosclerosis. However, many genes remain to be characterized. The ability to produce mice lacking whole-body expression of a given gene is still one of the most powerful techniques available for determining gene function. A complementary approach, underutilized yet vitally important to understanding lipoprotein metabolism, is the ability to create mice with gene deficiency only in a specific tissue. Liver, intestine, and macrophages are the major tissues and cells involved in lipoprotein metabolism and atherosclerosis, and additional tissues such as adipose tissue and brain are also of interest. Thus, feasible approaches to prepare general and tissue-specific gene knockout mouse models are necessary. Here, we describe our general procedure for generating whole-body knockout mice, using as an example the preparation of general (whole-body) phospholipid transfer protein (PLTP) gene knockout mice. We also describe several approaches to generating liver, intestine, and myeloid cell-specific tissue-specific knockout mice, using as an example the preparation of tissue-specific knockout mice for the subunit 2 of serine palmitoyltransferase (SPT), a key enzyme for sphingomyelin de novo synthesis. Bone marrow transplantation is an alternative means of creating myeloid cell-specific knockout mice. The general principles and techniques described here apply to the establishment of other gene knockout mouse models as well. The ability to manipulate gene expression in specific tissues as well as throughout the entire body of the mouse is anticipated to yield novel insights into lipid and lipoprotein metabolism and the development of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siuta-Mangano P, Janero DR, Lane MD (1982) Association and assembly of triglyceride and phospholipid with glycosylated and unglycosylated apoproteins of very low density lipoprotein in the intact liver cell. J Biol Chem 257:11463–11467

    PubMed  CAS  Google Scholar 

  2. Banarjee D, Redman CM (1984) Biosynthesis of high density lipoprotein by chicken liver: conjugation of nascent lipids with apoprotein A1. J Cell Biol 99:1917–1926

    Article  Google Scholar 

  3. Gylling H, Miettinen TA (1995) The effect of cholesterol absorption inhibition on low density lipoprotein cholesterol level. Atherosclerosis 117:305–308

    Article  PubMed  CAS  Google Scholar 

  4. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–808

    Article  PubMed  CAS  Google Scholar 

  5. Freeman M, Ashkenas J, Rees KJG, Kingsley DM, Copeland N, Jenkins NA, Krieger M (1990) An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA 87:8810–8814

    Article  PubMed  CAS  Google Scholar 

  6. Kodama T, Freeman M, Rohrer LJ, Zabrewky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531–535

    Article  PubMed  CAS  Google Scholar 

  7. Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL (2006) A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 4:211–221

    Article  PubMed  CAS  Google Scholar 

  8. Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A (2006) Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta 1761:655–666

    Article  PubMed  CAS  Google Scholar 

  9. Jessup W, Gelissen IC, Gaus K, Kritharides L (2006) Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 17:247–257

    Article  PubMed  CAS  Google Scholar 

  10. Merrill AH, Jones DD (1990) An update of the enzymology and regulation sphingo­myelin metabolism. Biochim Biophys Acta 1044:1–12

    Article  PubMed  CAS  Google Scholar 

  11. Weiss B, Stoffel W (1997) Human and murine serine-palmitoyl-CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem 249:239–247

    Article  PubMed  CAS  Google Scholar 

  12. Hanada K, Hara T, Nishijima M, Kuge O, Dickson RC, Nagiec MM (1997) A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J Biol Chem 272:32108–32114

    Article  PubMed  CAS  Google Scholar 

  13. Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S, Jiang XC (2005) Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem 280:10284–10289

    Article  PubMed  CAS  Google Scholar 

  14. Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110:3465–3471

    Article  PubMed  CAS  Google Scholar 

  15. Hojjati MR, Li Z, Jiang XC (2005) Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta 1737:44–51

    Article  PubMed  CAS  Google Scholar 

  16. Farley FW, Soriano P, Steffen LS, Dymecki SM (2000) Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28:106–110

    Article  PubMed  CAS  Google Scholar 

  17. Jones JR, Shelton KD, Magnuson MA (2005) Strategies for the use of site-specific recombinases in genome engineering. Methods Mol Med 103:245–257

    PubMed  CAS  Google Scholar 

  18. Herz J, Gerard RD (1993) Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 90:2812–2816

    Article  PubMed  CAS  Google Scholar 

  19. Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  PubMed  Google Scholar 

  20. Gu H, Zou YR, Rajewsky R (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164

    Article  PubMed  CAS  Google Scholar 

  21. Ramirez-Solis R, Davis AC, Bradley A (1993) Gene targeting in embryonic stem cells. Methods Enzymol 225:855–878

    Article  PubMed  CAS  Google Scholar 

  22. Kucherlapati MH, Nguyen AA, Bronson RT, Kucherlapati RS (2006) Inactivation of conditional Rb by Villin-Cre leads to aggressive tumors outside the gastrointestinal tract. Cancer Res 66:3576–3583

    Article  PubMed  CAS  Google Scholar 

  23. Adachi M, Kurotani R, Morimura K, Shah Y, Sanford M, Madison BB, Gumucio DL, Marin HE, Peters JM, Young HA, Gonzalez FJ (2006) PPAR{gamma} in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55:1104–1113

    Article  PubMed  CAS  Google Scholar 

  24. Boesten LS, Zadelaar AS, van Nieuwkoop A, Hu L, Jonkers J, van de Water B, Gijbels MJ, van der Made I, de Winther MP, Havekes LM, van Vlijmen BJ (2006) Macrophage retinoblastoma deficiency leads to enhanced atherosclerosis development in ApoE-deficient mice. FASEB J 20:953–955

    Article  PubMed  CAS  Google Scholar 

  25. Grivennikov SI, Tumanov AV, Liepinsh DJ, Kruglov AA, Marakusha BI, Shakhov AN, Murakami T, Drutskaya LN, Forster I, Clausen BE, Tessarollo L, Ryffel B, Kuprash DV, Nedospasov SA (2005) Distinct and nonredundant in vivo functions of TNF produced by t cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22:93–104

    PubMed  CAS  Google Scholar 

  26. Liu R, Hojjati MR, Devlin CM, Hansen IH, Jiang XC (2007) Macrophage phospholipid transfer protein deficiency and ApoE secretion: impact on mouse plasma cholesterol levels and atherosclerosis. Arterioscler Thromb Vasc Biol 27:190–196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jiang, XC. (2013). Generation of General and Tissue-Specific Gene Knockout Mouse Models. In: Freeman, L. (eds) Lipoproteins and Cardiovascular Disease. Methods in Molecular Biology, vol 1027. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-369-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-369-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-368-8

  • Online ISBN: 978-1-60327-369-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics