Skip to main content

Experimental Models of Visceral Pain

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

Visceral pain models are used to study afferent nerve traffic during noxious stimulation at the level of the visceral organ. This chapter provides details on several in vitro and in vivo models of organs in the gastrointestinal and genitourinary tract that use electrophysiological recordings of afferent nerve fibres in order to directly characterize stimulus-response relationships. These models can also be used to investigate stimulus-response patterns during physiological (nonpainful) stimulation of the visceral organs or during exposure to pathological stimuli, such as inflammatory mediators during inflammation of the visceral organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller MH, Glatzle J, Kampitoglou D, Kasparek MS, Grundy D, Kreis ME (2008) Differential sensitization of afferent neuronal pathways during postoperative ileus in the mouse jejunum. Ann Surg 247:791–802

    Article  PubMed  Google Scholar 

  2. Brunsden AM, Jacob S, Bardhan KD, Grundy D (2002) Mesenteric afferent nerves are sensitive to vascular perfusion in a novel preparation of rat ileum in vitro. Am J Physiol Gastrointest Liver Physiol 283:G656-G665

    PubMed  CAS  Google Scholar 

  3. Rong W, Winchester WJ, Grundy D (2007) Spontaneous hypersensitivity in mesenteric afferent nerves of mice deficient in the sst2 subtype of somatostatin receptor. J Physiol 581:779–786

    Article  PubMed  Google Scholar 

  4. Lynn PA, Blackshaw LA (1999) In vitro recordings of afferent fibres with receptive fields in the serosa, muscle and mucosa of rat colon. J Physiol 518(Pt 1):271–282

    Article  PubMed  CAS  Google Scholar 

  5. Page AJ, Blackshaw LA (1998) An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J Physiol 512(Pt 3):907–916

    Article  PubMed  CAS  Google Scholar 

  6. Cervero F, Sann H (1989) Mechanically evoked responses of afferent fibres innervating the guinea-pig’s ureter: an in vitro study. J Physiol 412:245–266

    PubMed  CAS  Google Scholar 

  7. Grundy D, Booth CE, Winchester W, Hicks GA (2004) Peripheral opiate action on afferent fibres supplying the rat intestine. Neurogastro­enterol Motil 16(Suppl. 2):29–37

    Article  PubMed  Google Scholar 

  8. Hillsley K, McCaul C, Aerssens J, Peeters PJ, Gijsen H, Moechars D, Coulie B, Grundy D, Stead RH (2007) Activation of the cannabinoid 2 (CB2) receptor inhibits murine mesenteric afferent nerve activity. Neurogastroenterol Motil 19:769–777

    Article  PubMed  CAS  Google Scholar 

  9. Ozaki N, Sengupta JN, Gebhart GF (1999) Mechanosensitive properties of gastric vagal afferent fibers in the rat. J Neurophysiol 82:2210–2220

    PubMed  CAS  Google Scholar 

  10. Schloithe AC, Sutherland K, Woods CM, Blackshaw LA, Davison JS, Toouli J, Saccone GT (2008) A novel preparation to study rat pancreatic spinal and vagal mechanosensitive afferents in vitro. Neurogastroenterol Motil 20:1060–1069

    Article  PubMed  CAS  Google Scholar 

  11. Schloithe AC, Woods CM, Davison JS, Blackshaw LA, Toouli J, Saccone GT (2006) Pancreatobiliary afferent recordings in the anaesthetised Australian possum. Auton Neurosci 126-127:292–298

    Article  PubMed  CAS  Google Scholar 

  12. Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford AP, Burnstock G (2001) P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 21:5670–5677

    PubMed  CAS  Google Scholar 

  13. Kumazawa T, Mizumura K (1980) Chemical responses of polymodal receptors of the scrotal contents in dogs. J Physiol 299:219–231

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Kreis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Karpitschka, M., Kreis, M.E. (2010). Experimental Models of Visceral Pain. In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics