Skip to main content

Real-Time PCR Methods to Study Expression of Genes Related to Hypermutability

  • Protocol
  • First Online:
Antibiotic Resistance Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 642))

  • 2862 Accesses

Abstract

Pathogenic bacteria can have sub-populations of hypermutable bacteria. This sub-population has a higher spontaneous mutation rate than the majority of the population which can be attributed to defects in proofreading and repair mechanisms. This leads to the evolution of drug-resistant strains of bacteria through genetic change. It is important to study the expression of genes involved in, for example, mismatch repair and the SOS system by real-time PCR to determine hypermutability and therefore provide an indicator of the mutagenic ability of certain strains of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller JH (1996) Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50:625–643

    Article  CAS  PubMed  Google Scholar 

  2. Oliver A, Baquero F, Blazquez J (2002) The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650

    Article  CAS  PubMed  Google Scholar 

  3. Horst J-P, Wu T-H, Marinus MG (1999) Escherichia coli mutator genes. Trends Microbiol 7:29–36

    Article  CAS  PubMed  Google Scholar 

  4. Herman GE, Modrich P (1981) Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J Bacteriol 145:644–646

    CAS  PubMed  Google Scholar 

  5. Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254

    Article  CAS  PubMed  Google Scholar 

  6. Wilson M, DeRisi J, Kristensen H-H, Imboden P, Rane S, Brown PO, Schoolnik GK (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96:12833–12838

    Article  CAS  PubMed  Google Scholar 

  7. Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083

    Article  CAS  PubMed  Google Scholar 

  8. Saunders NA, Underwood A, Kearns AM, Hallas G (2004) A virulence-associated gene microarray: a tool for investigation of the evolution and pathogenic potential of Staphylococcus aureus. Microbiology 150:3763–3771

    Article  CAS  PubMed  Google Scholar 

  9. Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE, Hartwell LH, Brown PO, Friend SH (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4:1293–1301

    Article  CAS  PubMed  Google Scholar 

  10. Adam M, Murali B, Glenn N, Potter SS (2008) Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol Biol 8:52

    Article  PubMed  Google Scholar 

  11. Guard-Bouldin J, Morales CA, Frye JG, Gast RK, Musgrove M (2007) Detection of Salmonella enterica subpopulations by phenotype microarray antibiotic resistance patterns. Appl Environ Microbiol 73:7753–7756

    Article  CAS  PubMed  Google Scholar 

  12. Dumas JL, van Delden C, Perron K, Köhler T (2006) Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 254:217–225

    Article  PubMed  Google Scholar 

  13. Mangan JA, Monahan IM, Butcher PD (2002) Gene expression during host-pathogen interactions: approaches to bacterial mRNA extraction and labelling for microarray analysis. In: Wren B, Dorrell N (eds) Functional microbial genomics: methods in microbiology. Academic, London, pp 137–151

    Chapter  Google Scholar 

  14. Brooks PC, Movahedzadeh F, Davis EO (2001) Identification of some DNA damage-inducible genes of Mycobacterium tuberculosis: apparent lack of correlation with LexA binding. J Bacteriol 183:4459–4467

    Article  CAS  PubMed  Google Scholar 

  15. Boshoff HI, Reed MB, Barry CE III, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113:183–193

    Article  CAS  PubMed  Google Scholar 

  16. Hampshire T, Soneji S, Bacon J, James BW, Hinds J, Laing K, Stabler RA, Marsh PD, Butcher PD (2004) Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms? Tuberculosis 84:228–238

    Article  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  18. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

O’Sullivan, D.M. (2010). Real-Time PCR Methods to Study Expression of Genes Related to Hypermutability. In: Gillespie, S., McHugh, T. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 642. Humana Press. https://doi.org/10.1007/978-1-60327-279-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-279-7_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-278-0

  • Online ISBN: 978-1-60327-279-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics