Skip to main content

Cell-Type-Specific Transgenesis in the Mouse

  • Protocol
  • First Online:
Transgenesis Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 561))

Summary

Since the early 1980s, when the first transgenic mice were generated, thousands of genetically modified mouse lines have been created. Early on, Jaenisch established proof of principle, showing that viral integration into the mouse genome and germline transmission of those exogenous sequences were possible (Proc Natl Acad Sci USA 71:1250–1254, 1974). Gordon et al. (Proc Natl Acad Sci USA 77:7380–7384, 1980) and Brinster et al. (Cell 27:223–231, 1981) subsequently used cloned genes to create “transgenic constructs” in which the exogenous DNA was randomly inserted into different sites in the mouse genome, stably maintained, and transmitted through the germline to the progeny. The utility of the process quickly became apparent when a transgene carrying the metallothionein-1 (Mt-1) promoter linked to thymidine kinase was able to drive expression in the mouse liver when promoter activity was induced by administration of metals. In an attempt to find stronger and more reliable promoters, viral promoter elements from SV40 or cytomegalovirus were incorporated. However, while these promoters were able to drive high levels of expression, for many applications they proved to be too blunt an instrument as they drove ubiquitous expression in many, if not all cell types, making it very hard to discern organ-specific or cell-type-specific effects due to transgene expression. Thus the need to find cell-type-specific promoters that could reproducibly drive high levels of transgene expression in a particular cell type, e.g., cardiomyocyte, became apparent. One such example is the α myosin heavy-chain (MHC) promoter, which has been used extensively to drive transgene expression in a cardiomyocyte-specific manner in the mouse. This chapter, while not written as a typical methods section, will describe the necessary components of the α myosin promoter. In addition, common problems associated with transgenic mouse lines will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaenisch, R. and Mintz, B. (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 71, 1250–1254.

    Article  PubMed  CAS  Google Scholar 

  2. Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. and Ruddle, F.H. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA, 77, 7380–7384.

    Article  PubMed  CAS  Google Scholar 

  3. Brinster, R.L., Chen, H.Y., Trumbauer, M., Senear, A.W., Warren, R. and Palmiter, R.D. (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell, 27, 223–231.

    Article  PubMed  CAS  Google Scholar 

  4. Bronson, S.K., Plaehn, E.G., Kluckman, K.D., Hagaman, J.R., Maeda, N. and Smithies, O. (1996) Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci USA, 93, 9067–9072.

    Article  PubMed  CAS  Google Scholar 

  5. Dupuy, A.J., Clark, K., Carlson, C.M., Fritz, S., Davidson, A.E., Markley, K.M., Finley, K., Fletcher, C.F., Ekker, S.C., Hackett, P.B. et al (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA, 99, 4495–4499.

    Article  PubMed  CAS  Google Scholar 

  6. Gulick, J., Subramaniam, A., Neumann, J. and Robbins, J. (1991) Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem, 266, 9180–9185.

    PubMed  CAS  Google Scholar 

  7. Pedersen, A.G., Baldi, P., Chauvin, Y. and Brunak, S. (1999) The biology of eukaryotic promoter prediction – a review. Comput Chem, 23, 191–207.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki, Y., Tsunoda, T., Sese, J., Taira, H., Mizushima-Sugano, J., Hata, H., Ota, T., Isogai, T., Tanaka, T., Nakamura, Y. et al (2001) Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Res, 11, 677–684.

    Article  PubMed  CAS  Google Scholar 

  9. Proudfoot, N.J., Furger, A. and Dye, M.J. (2002) Integrating mRNA processing with transcription. Cell, 108, 501–512.

    Article  PubMed  CAS  Google Scholar 

  10. Reed, R. (2003) Coupling transcription, splicing and mRNA export. Curr Opin Cell Biol, 15, 326–331.

    Article  PubMed  CAS  Google Scholar 

  11. Kozak, M. (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res, 15, 8125–8148.

    Article  PubMed  CAS  Google Scholar 

  12. Marano, R.J., Brankov, M. and Rakoczy, P.E. (2004) Discovery of a novel control element within the 5′-untranslated region of the ­vascular endothelial growth factor. Regulation of expression using sense oligonucleotides. J Biol Chem, 279, 37808–37814.

    Article  PubMed  CAS  Google Scholar 

  13. Lai, E.C. (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 30, 363–364.

    Article  PubMed  CAS  Google Scholar 

  14. Knouff, C., Malloy, S., Wilder, J., Altenburg, M.K. and Maeda, N. (2001) Doubling expression of the low density lipoprotein receptor by truncation of the 3′-untranslated region sequence ameliorates type iii hyperlipoproteinemia in mice expressing the human apoe2 isoform. J Biol Chem, 276, 3856–3862.

    Article  PubMed  CAS  Google Scholar 

  15. McNeish, J.D., Thayer, J., Walling, K., Sulik, K.K., Potter, S.S. and Scott, W.J. (1990) Phenotypic characterization of the transgenic mouse insertional mutation, legless. J Exp Zool, 253, 151–162.

    Article  PubMed  CAS  Google Scholar 

  16. Lerman, I., Harrison, B.C., Freeman, K., Hewett, T.E., Allen, D.L., Robbins, J. and Leinwand, L.A. (2002) Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol, 92, 2245–2255.

    PubMed  Google Scholar 

  17. Rajagopal, S.K., Ma, Q., Obler, D., Shen, J., Manichaikul, A., Tomita-Mitchell, A., Boardman, K., Briggs, C., Garg, V., Srivastava, D. et al (2007) Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol, 43, 677–685.

    Article  PubMed  CAS  Google Scholar 

  18. Sekar, R.B., Kizana, E., Smith, R.R., Barth, A.S., Zhang, Y., Marban, E. and Tung, L. (2007) Lentiviral vector-mediated expression of GFP or Kir2.1 alters the electrophysiology of neonatal rat ventricular myocytes without inducing cytotoxicity. Am J Physiol Heart Circ Physiol, 293, H2757–H2770.

    Article  PubMed  CAS  Google Scholar 

  19. Buerger, A., Rozhitskaya, O., Sherwood, M.C., Dorfman, A.L., Bisping, E., Abel, E.D., Pu, W.T., Izumo, S. and Jay, P.Y. (2006) Dilated cardiomyopathy resulting from high-level myocardial expression of Cre-recombinase. J Card Fail, 12, 392–398.

    Article  PubMed  CAS  Google Scholar 

  20. McCloskey, D.T., Turnbull, L., Swigart, P.M., Zambon, A.C., Turcato, S., Joho, S., Grossman, W., Conklin, B.R., Simpson, P.C. and Baker, A.J. (2005) Cardiac transgenesis with the tetracycline transactivator changes myocardial function and gene expression. Physiol Genomics, 22, 118–126.

    Article  PubMed  CAS  Google Scholar 

  21. Sanbe, A., Gulick, J., Hanks, M.C., Liang, Q., Osinska, H. and Robbins, J. (2003) Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res, 92, 609–616.

    Article  PubMed  CAS  Google Scholar 

  22. Maue, R.A. (2007) Understanding ion channel biology using epitope tags: progress, pitfalls, and promise. J Cell Physiol, 213, 618–625.

    Article  PubMed  CAS  Google Scholar 

  23. Weng, A., Magnuson, T. and Storb, U. (1995) Strain-specific transgene methylation occurs early in mouse development and can be recapitulated in embryonic stem cells. Development, 121, 2853–2859.

    PubMed  CAS  Google Scholar 

  24. Boyes, J. and Bird, A. (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell, 64, 1123–1134.

    Article  PubMed  CAS  Google Scholar 

  25. Gundersen, G., Kolsto, A.B., Larsen, F. and Prydz, H. (1992) Tissue-specific methylation of a CpG island in transgenic mice. Gene, 113, 207–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Robbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gulick, J., Robbins, J. (2009). Cell-Type-Specific Transgenesis in the Mouse. In: Cartwright, E. (eds) Transgenesis Techniques. Methods in Molecular Biology, vol 561. Humana Press. https://doi.org/10.1007/978-1-60327-019-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-019-9_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-018-2

  • Online ISBN: 978-1-60327-019-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics