Skip to main content

Generation of Chimeras by Microinjection

  • Protocol
  • First Online:
Transgenesis Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 561))

Summary

Since the technique of introducing a targeted mutation (‘gene targeting’) into the mouse genome was published almost 20 years ago (Cell 51:503–512, 1987), the number of mouse mutants (mouse models) is increasing, especially after the advent of the full mouse genomic sequence in 2002 and the human genomic sequences in 2003 that reveals more and more large stretches of similarity between the two species at the genomic level. This chapter describes the tools and the experimental route of targeted manipulation by microinjection in the mouse using targeted embryonic stem cells (ES cells).

The techniques have become standardized over recent years (Nature 309:255–256, 1984; Practical Approach. IRL Press, Oxford, 254 pp, 1987; Science 240:1468–1475, 1988; Practical Approach. IRL Press, Oxford, New York, 1993; Transgenic Animal Technology: A Laboratory Handbook, 2nd edition. Academic Press, San Deigo, 2002; Manipulating the Mouse Embryo – A Laboratory Manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2003) and basically two methods have been used to generate chimeric mice that transmit the mutation of interest via the ES cell genome to the offspring:

Microinjection of ES cells into blastocyst or morula stage embryos (this chapter) or aggregation of ES cells with morula stage embryos (see Chapter 14).Microinjection of ES cells into the blastocoel (cavity) of the blastocyst stage embryo and also morula injections using micropipettes driven by micromanipulators require sophisticated manual skills and an expensive phase contrast inverted microscope. Although most commonly used, it is quite expensive to establish this technique in a laboratory, in particular, if piezo- or laser- supported routes come into play. Although the establishment of germ-line potent ES cells was first published in 1981 (Proc Natl Acad Sci U S A 78:7634–7636, 1981; Nature 292:154–156, 1981), up to now it has not been possible to establish germ-line transmitting ES cells from any other mammalian species, not even from rat which is closely related, nor was it possible to introduce targeted mutations by different means to the germ-line of mammals. After 20 years, the mouse is still the only mammalian species where mutations can be introduced in a targeted manner and therefore it is very important to many fields in biology, like immunology, neurobiology, and developmental biology to study gene function and disease. Through means of introducing even point mutations to single relevant molecules of a signal transduction pathway in order to study regulation of cellular and physiological processes in complex organisms in a tissue specific or inducible manner (conditional gene targeting, (Cell 73:1155–1164, 1993; Science 265:103–106, 1994)), more recently the field has expanded exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, K. R. and Capecchi, M. R. (1987). Site directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51, 503–512

    Article  PubMed  CAS  Google Scholar 

  2. Bradley, A., Evans, M., Kaufman, M. H. and Roberston, E. J. (1984). Formation of germ line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309, 255–256

    Article  PubMed  CAS  Google Scholar 

  3. Robertson, E. J. (1987). Teratocarcinomas and embryonic stem cells: a practical approach. In:D. Rickwood and B. D. Hames (series eds.) Practical Approach. IRL Press, Oxford, 254 pp

    Google Scholar 

  4. Jaenisch, R. (1988). Transgenic animals. Science, 240, 1468–1475

    Article  PubMed  CAS  Google Scholar 

  5. Joyner, A. L., ed. (1993). Gene targeting: a practical approach. In:D. Rickwood and B. D. Hames (series eds.) Practical Approach. IRL Press, Oxford, New York

    Google Scholar 

  6. Pinkert, C. A. (2002). Transgenic Animal Technology: A Laboratory Handbook<, 2nd edition. Academic Press, San Deigo

    Google Scholar 

  7. Nagy, A., Gertsenstein, M., Vintersten, K. and R. Behringer (2003). Manipulating the Mouse Embryo - A Laboratory Manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  8. Gu, H., Zou, Y. R. and Rajewsky, K. (1993). Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell, 73, 1155–1164

    Article  PubMed  CAS  Google Scholar 

  9. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. and Rajewsky K. (1994). Deletion of a DNA polymerase β gene segment in T cells using cell-type-specific targeting. Science, 265, 103–106

    Article  PubMed  CAS  Google Scholar 

  10. Gardner, R. L. (1968). Mouse chimeras obtained by the injection of cells into the blastocyst. Nature, 220, 596–597

    Article  PubMed  CAS  Google Scholar 

  11. Martin, G. R. (1981) Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 78, 7634–7636

    Article  PubMed  CAS  Google Scholar 

  12. Evans, M. J. and Kaufmann, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292,154–156

    Article  PubMed  CAS  Google Scholar 

  13. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. and Kucherlapati, R. S. (1985). Insertion of DNA sequences into the chromosomal β-globin locus by homologous recombination. Nature, 317(6034), 230–234

    Article  PubMed  CAS  Google Scholar 

  14. Thomas, K. R. and Capecchi, M. R. (1990). Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 346(6287), 847–850

    Article  PubMed  CAS  Google Scholar 

  15. Kühn, R., Schwenk, F., Aguet, M. and Rajewsky, K. (1995). Inducible gene targeting in mice. Science, 269(5229), 1427–1429

    Article  PubMed  Google Scholar 

  16. Logie, C. and Stewart, F. (1995). Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A, 92, 5940–5944

    Article  PubMed  CAS  Google Scholar 

  17. Gossen, M., Freundlieb, S., Bender, G., Muller, G. Hillen, W. and Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science, 268(5218), 1766–1769

    Article  PubMed  CAS  Google Scholar 

  18. Feil, R., Brochard, J., Mascrez, B., LeMeur, M., Metzger, D. and Chambon, P. (1996). Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A, 93, 10887–10890

    Article  PubMed  CAS  Google Scholar 

  19. Kellendonk, C., Tronche, F., Monaghan, A. P., Angrand, P. O., Stewart, F. and Schutz, G. (1996). Regulation of Cre recombinase activity by the synthetic steroid Ru486. Nucleic Acids Res, 24(8), 1404–1411

    Article  PubMed  CAS  Google Scholar 

  20. Koentgen, F. et al (1993). Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int Immunol, 5, 957–964

    Article  CAS  Google Scholar 

  21. Eggan, K., Akutsu, H., Loring, J., Jackson-Grusby, L., Klemm, M., Rideout III, W. M., Yanagimachi, R. and Jaenisch, R. (2001). Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A, 98, 6209–6214

    Article  PubMed  CAS  Google Scholar 

  22. Eggan, K., Rode, A., Jentsch, I., Samuel, C., Hennek, T., Tintrup, H., Zevnik, B., Erwein, J., Loring, L., Jackson-Grusby, L., Speicher, M. R., Kuehn, R. and Jaenisch, R. (2002). Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotechnol, 20, 455–459

    Article  PubMed  CAS  Google Scholar 

  23. Gridley, T. and Woychik, R. (2007). Laser surgery for mouse geneticists. Nat Biotechnol, 25 (1), 59–60

    Article  PubMed  CAS  Google Scholar 

  24. Poueymirou, W. T. et al (2007). F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol, 25(1), 91–99

    Article  PubMed  CAS  Google Scholar 

  25. Schwenk, F., Zevnik, B., Brüning, J., Röhl, M., Willuweit, A., Rode, A., Hennek, T., Kauselmann, G., Jaenisch, R. and Kühn, R. (2003). Hybrid embryonic stem cell-derived tetraploid mice show apparently normal morphological, physiological and neurological characteristics. Mol Cell Biol, 23(11), 3982–3989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Plück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Plück, A., Klasen, C. (2009). Generation of Chimeras by Microinjection. In: Cartwright, E. (eds) Transgenesis Techniques. Methods in Molecular Biology, vol 561. Humana Press. https://doi.org/10.1007/978-1-60327-019-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-019-9_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-018-2

  • Online ISBN: 978-1-60327-019-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics