Skip to main content

Circular Dichroism for the Analysis of Protein-DNA Interactions

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

Circular dichroism (CD) is a well-established technique for the analysis of both protein and DNA structure. The analysis of protein–nucleic acid complexes presents greater challenges, but at wavelengths above 250 nm, the circular dichroism signal from the DNA predominates. Examples are given of the use of CD to examine structural changes to DNA induced by protein binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Further Reading

References

  1. Fasman, G.D. Editor (1996). Circular Dichroism and the Conformational Analysis of Biomolecules. Plenum, New York, pp. 1–738. ISBN 0-306-45142-5.

    Google Scholar 

  2. Hammes, G.G. (2005). Spectroscopy for the Biological Sciences. John Wiley 4, 63–84. ISBN 13 978-047171344 9.

    Google Scholar 

  3. Berova, N., Nakarishi, K., and Woody, R.W. Editors (2000). Circular Dichroism: Principles and Applications, 2nd Ed. Wiley-VCH, New York, 21, 601–615, 24–27, 703–913, ISBN 13 978-047133005.

    Google Scholar 

References

  1. Compton, L.A., and Johnson, W.C., Jr. (1986). Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal. Biochem. 155, 155–167.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson, W.C., Jr. (1990). Protein secondary structure and circular dichroism: a practical guide. Proteins: Struct. Funct. Genet. 7, 205–214.

    Article  CAS  Google Scholar 

  3. Lees, J.G., Miles, A.J., Wien, F., and Wallace, B.A. (2006). A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics. 22, 1955–1962.

    Article  PubMed  CAS  Google Scholar 

  4. Whitmore, L., and Wallace, B.A. (2004). DICHROWEB: on line server for protein secondary structure analysis from circular dichroism data. Nucleic Acids Res. 32, W668–W673.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson, B.B., Dakl, K.S., Tinoco, I. Jr., Ivanov, V.I., and Zhurkin, V.B. (1981). Correlations between deoxyribonucleic acid structural parameters and calculated circular dichroism spectra. Biochemistry. 20, 73–78.

    Article  PubMed  CAS  Google Scholar 

  6. Basham, B., Schroth, G.P., and Ho, P.S. (1995). An A DNA triplecode: thermodynamic rules for predicting A and B DNA. Proc. Natl Acad. Sci. U. S. A. 92, 6464–6468.

    Article  PubMed  CAS  Google Scholar 

  7. Scarlett, G.P., Elgar, S.J., Cary, P.D., Noble, A.M., Orford, R.L., Kneale, G.G., and Guille, M.J. (2004). Intact RNA-binding domains are necessary for structure-specific DNA binding and transcription control by CBTF122 during Xenopus development. J. Biol. Chem. 279, 52447–52455.

    Article  PubMed  CAS  Google Scholar 

  8. Gray, D.M., Hung, S.H., and Johnson, K.H. (1995). Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 246, 19–34.

    Article  PubMed  CAS  Google Scholar 

  9. Hardin, C.C., Henderson, E., Watson, T., and Prosser, J.K. (1991). Monovalent cation induced structural transition in telomeric DNAs: G-DNA folding intermediates. Biochemistry. 30, 4460–4472.

    Article  PubMed  CAS  Google Scholar 

  10. Carpenter, M.L., and Kneale, G.G. (1991). Circular dichroism and fluorescence analysis of the interaction of Pf1 Gene 5 protein with poly(dT). J. Mol. Biol. 27, 681–689.

    Article  Google Scholar 

  11. Kansy, J.W., Cluck, B.A., and Gray, D.M. (1986). The binding of fd Gene 5 protein to polydeoxyribonucleotides: evidence from CD measurements for two binding modes. J. Biomol. Struc. Dynam. 3, 1079–1110.

    CAS  Google Scholar 

  12. Culard, F., and Maurizot, J.C. (1981). Lac repressor-lac operator interaction. Circular dichroism study. Nucleic Acids Res. 9, 5175–5184.

    Article  PubMed  CAS  Google Scholar 

  13. Wartell, R.M., and Adhya, S. (1988). DNA conformational change in Gal repressor–operator complex: involvement of central G–C base pair(s) of dyad symmetry. Nucleic Acids Res. 16, 11531–11541.

    Article  PubMed  CAS  Google Scholar 

  14. Torigoe, C., Kidokoro, S., Takimoto, M., Kyoyoku, Y., and Wada, A. (1991). Spectroscopic studies on lambda cro protein–DNA interactions. J. Mol. Biol. 219, 733–746.

    Article  PubMed  CAS  Google Scholar 

  15. Conner, F., Cary, P.D., Read, C., Preston, N.S., Driscoll, P.C., Denny, P., (1994). DNA binding and bending properties of the post-meiotically expressed Sry-related Protein Sox-5. Nucleic Acid Res. 22, 3339–3346.

    Article  Google Scholar 

  16. Papapanagiotou, I., Streeter, S.D., Cary, P.D., and Kneale, G.G. (2007). DNA structural deformations in the interaction of the controller protein C.Ahdl with its operator sequence. Nucleic Acids Res. 35, 2643–2650.

    Article  PubMed  CAS  Google Scholar 

  17. Taylor, I.A., Davis, K.G., Watts, D., and Kneale, G.G. (1994). DNA binding induces a major structural transition in a type I methyltransferase. EMBO J. 13, 5772–5778.

    PubMed  CAS  Google Scholar 

  18. Pinhero, P., Scarlett, G.P., Rodger, A., Rodger, P.M., Murray, A., Brown, T., Newbury, S., and McClellan, J.A. (2002). Structures of CUG repeats in RNA. J. Biol. Chem. 277, 35183–35190.

    Article  Google Scholar 

  19. Calnan, B.J., Biancalana, S., Hudson, D., and Frankel, A.D. (1991). Analysis of the arginine-rich peptites from the HIV TAT protein reveals unusual features of RNA-protein recognition. Genes Dev. 51, 201–210.

    Article  Google Scholar 

  20. Tan, R., and Frankel, A.D. (1995). Structural variety of arginine-rich RNA-binding peptides. Proc. Natl Acad. Sci. U. S. A. 92, 5282–5286.

    Article  PubMed  CAS  Google Scholar 

  21. Griko, Y., Sreerama, N., Osumi-Davis, P., Woody, R.W., and Woody, A.Y. (2001). Thermal and urea unfolding in T7 RNA polymerase: calorimetry, circular dichroism and fluorescence. Protein Sci. 10, 845–853.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Geoff Kneale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cary, P., Kneale, G.G. (2009). Circular Dichroism for the Analysis of Protein-DNA Interactions. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_36

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics