Skip to main content

In Cellulo DNA Analysis (LMPCR Footprinting)

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

The in cellulo analysis of DNA protein interactions and chromatin structure is very important to better understand the mechanisms involved in the regulation of gene expression. The nuclease-hypersensitive sites and sequences bound by transcription factors often correspond to genetic regulatory elements. Using the Ligation-mediated polymerase chain reaction (LMPCR) technology, it is possible to precisely analyze these DNA sequences to demonstrate the existence of DNA–protein interactions or unusual DNA structures directly in living cells. Indeed, the ideal chromatin substrate is, of course, found inside intact cells. LMPCR, a genomic-sequencing, technique that map DNA single-strand breaks at the sequence level of resolution, is the method of choice for in cellulo footprinting and DNA structure studies because it can be used to investigate any complex genomes, including human. The detailed conventional and automated LMPCR protocols are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D., and Riggs, A. D. (1990). In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1, Genes Dev. 4, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  2. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991). In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction, Proc. Natl. Acad. Sci. U S A. 88, 1374–1378.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, C. J., Li, L. J., Maruya, A., and Shively, J. E. (1995). In vitro and in vivo footprint analysis of the promoter of carcinoembryonic antigen in colon carcinoma cells: effects of interferon gamma treatment, Cancer Res. 55, 3873–3882.

    PubMed  CAS  Google Scholar 

  4. Tornaletti, S. and Pfeifer, G. P. (1995). UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes, J. Mol. Biol. 249, 714–728.

    Article  PubMed  CAS  Google Scholar 

  5. Pfeifer, G. P. and Riggs, A. D. (1991). Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR, Genes Dev. 5, 1102–1113.

    Article  PubMed  CAS  Google Scholar 

  6. Mueller, P. R. and Wold, B. (1989). In vivo footprinting of a muscle specific enhancer by ligation mediated PCR, Science. 246, 780–786.

    Article  PubMed  CAS  Google Scholar 

  7. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989). Genomic sequencing and methylation analysis by ligation mediated PCR, Science. 246, 810–813.

    Article  PubMed  CAS  Google Scholar 

  8. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992). Binding of transcription factors creates hot spots for UV photoproducts in vivo, Mol. Cell. Biol. 12, 1798–1804.

    PubMed  CAS  Google Scholar 

  9. Church, G. M. and Gilbert, W. (1984). Genomic sequencing, Proc. Natl. Acad. Sci. U S A. 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  10. Pfeifer, G. P. (1992). Analysis of chromatin structure by ligation-mediated PCR, PCR Methods Appl. 2, 107–111.

    PubMed  CAS  Google Scholar 

  11. Pfeifer, G. P. and Riggs, A. D. (1993). Genomic footprinting by ligation mediated polymerase chain reaction. In PCR Protocols: Current Methods and Applications (White, B., Ed.), pp 169–181, Humana, Totowa, NJ.

    Google Scholar 

  12. Pfeifer, G. P. and Riggs, A. D. (1993). Genomic sequencing, Methods Mol. Biol. 23, 169–181.

    PubMed  CAS  Google Scholar 

  13. Pfeifer, G. P., Singer-Sam, J., and Riggs, A. D. (1993). Analysis of methylation and chromatin structure, Methods Enzymol. 225, 567–583.

    Article  PubMed  CAS  Google Scholar 

  14. Gao, S., Drouin, R., and Holmquist, G. P. (1994). DNA repair rates mapped along the human PGK1 gene at nucleotide resolution, Science. 263, 1438–1440.

    Article  PubMed  CAS  Google Scholar 

  15. Tornaletti, S. and Pfeifer, G. P. (1994). Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer, Science. 263, 1436–1438.

    Article  PubMed  CAS  Google Scholar 

  16. Rodriguez, H., Drouin, R., Holmquist, G. P., O’Connor, T. R., Boiteux, S., Laval, J., Doroshow, J. H., and Akman, S. A. (1995). Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction, J. Biol. Chem. 270, 17633–17640.

    Article  PubMed  CAS  Google Scholar 

  17. Drouin, R. and Therrien, J. P. (1997). UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53, Photochem. Photobiol. 66, 719–726.

    Article  PubMed  CAS  Google Scholar 

  18. Drouin, R., Therrien, J. P., Angers, M., and Ouellet, S. (2001). In vivo DNA analysis. In Methods in Molecular Biology (Moss, T., Ed.), pp 175–219, Humana, Totowa, NJ.

    Google Scholar 

  19. Dai, S. M., Chen, H. H., Chang, C., Riggs, A. D., and Flanagan, S. D. (2000). Ligation-mediated PCR for quantitative in vivo footprinting, Nat. Biotechnol. 18, 1108–1111.

    Article  PubMed  CAS  Google Scholar 

  20. Dai, S. M., O’Connor, T. R., Holmquist, G. P., Riggs, A. D., and Flanagan, S. D. (2002). Ligation-mediated PCR: robotic liquid handling for DNA damage and repair, Biotechniques. 33, 1090–1097.

    PubMed  CAS  Google Scholar 

  21. McLellan, J. A. (2001). Osmium tetroxide modification and the study of DNA-protein interactions, Methods Mol. Biol. 148, 121–34.

    Google Scholar 

  22. Rozek, D. and Pfeifer, G. P. (1993). In vivo protein-DNA interactions at the c-jun promoter: preformed complexes mediate the UV response, Mol. Cell. Biol. 13, 5490–5499.

    PubMed  CAS  Google Scholar 

  23. Cartwright, I. L. and Kelly, S. E. (1991). Probing the nature of chromosomal DNA-protein contacts by in vivo footprinting, Biotechniques. 11, 188–190, 192–184, 196 passim.

    PubMed  CAS  Google Scholar 

  24. Maxam, A. M. and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages, Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  25. Chin, P. L., Momand, J., and Pfeifer, G. P. (1997). In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation, Oncogene. 15, 87–99.

    Article  PubMed  CAS  Google Scholar 

  26. Angers, M., Drouin, R., Bachvarova, M., Paradis, I., Marceau, F., and Bachvarov, D. R. (2000). In vivo protein-DNA interactions at the kinin B(1) receptor gene promoter: no modification on interleukin-1 beta or lipopolysaccharide induction, J. Cell. Biochem. 78, 278–296.

    Article  PubMed  CAS  Google Scholar 

  27. Becker, M. M. and Wang, J. C. (1984). Use of light for footprinting DNA in vivo, Nature. 309, 682–687.

    Article  PubMed  CAS  Google Scholar 

  28. Pfeifer, G. P. and Tornaletti, S. (1997). Footprinting with UV irradiation and LMPCR, Methods. 11, 189–196.

    Article  PubMed  CAS  Google Scholar 

  29. Pfeifer, G. P., Chen, H. H., Komura, J., and Riggs, A. D. (1999). Chromatin structure analysis by ligation-mediated and terminal transferase-mediated polymerase chain reaction, Methods Enzymol. 304, 548–571.

    Article  PubMed  CAS  Google Scholar 

  30. Cadet, J., Anselmino, C., Douki, T., and Voituriez, L. (1992). Photochemistry of nucleic acids in cells, J. Photochem. Photobiol. B. 15, 277–298.

    Article  PubMed  CAS  Google Scholar 

  31. Mitchell, D. L. and Nairn, R. S. (1989). The biology of the (6-4) photoproduct, Photochem. Photobiol. 49, 805–819.

    Article  PubMed  CAS  Google Scholar 

  32. Holmquist, G. P. and Gao, S. (1997). Somatic mutation theory, DNA repair rates, and the molecular epidemiology of p53 mutations, Mutat. Res. 386, 69–101.

    Article  PubMed  CAS  Google Scholar 

  33. Gale, J. M., Nissen, K. A., and Smerdon, M. J. (1987). UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases, Proc. Natl. Acad. Sci. U S A. 84, 6644–6648.

    Article  PubMed  CAS  Google Scholar 

  34. Gale, J. M. and Smerdon, M. J. (1990). UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes, Photochem. Photobiol. 51, 411–417.

    Article  PubMed  CAS  Google Scholar 

  35. Mitchell, D. L., Nguyen, T. D., and Cleaver, J. E. (1990). Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin, J. Biol. Chem. 265, 5353–5356.

    PubMed  CAS  Google Scholar 

  36. Rigaud, G., Roux, J., Pictet, R., and Grange, T. (1991). In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor, Cell. 67, 977–986.

    Article  PubMed  CAS  Google Scholar 

  37. Miller, M. R., Castellot, J. J., Jr., and Pardee, A. B. (1978). A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation, Biochemistry. 17, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  38. Contreras, R. and Fiers, W. (1981). Initiation of transcription by RNA polymerase II in permeable, SV40-infected or noninfected, CVI cells; evidence for multiple promoters of SV40 late transcription, Nucleic Acids Res. 9, 215–236.

    Article  PubMed  CAS  Google Scholar 

  39. Tanguay, R. L., Pfeifer, G. P., and Riggs, A. D. (1990). PCR-aided DNaseI footprinting of single copy gene sequences in permeabilized cells, Nucleic Acids Res. 18, 5902.

    Article  PubMed  CAS  Google Scholar 

  40. Tormanen, V. T., Swiderski, P. M., Kaplan, B. E., Pfeifer, G. P., and Riggs, A. D. (1992). Extension product capture improves genomic sequencing and DNase I footprinting by ligation-mediated PCR, Nucleic Acids Res. 20, 5487–5488.

    Article  PubMed  CAS  Google Scholar 

  41. Tornaletti, S., Bates, S., and Pfeifer, G. P. (1996). A high-resolution analysis of chromatin structure along p53 sequences, Mol. Carcinog. 17, 192–201.

    Article  PubMed  CAS  Google Scholar 

  42. Szabo, P. E., Pfeifer, G. P., and Mann, J. R. (1998). Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouse H19 gene, Mol. Cell. Biol. 18, 6767–6776.

    PubMed  CAS  Google Scholar 

  43. Garrity, P. A. and Wold, B. J. (1992). Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting, Proc. Natl. Acad. Sci. U S A. 89, 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  44. Hornstra, I. K. and Yang, T. P. (1994). High-resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5′ region on the active and inactive X chromosomes: correlation with binding sites for transcription factors, Mol. Cell. Biol. 14, 1419–1430.

    PubMed  CAS  Google Scholar 

  45. Angers, M., Cloutier, J. F., Castonguay, A., and Drouin, R. (2001). Optimal conditions to use Pfu exo() DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols, Nucleic Acids Res. 29, E83.

    Article  PubMed  CAS  Google Scholar 

  46. Rouget, R., Vigneault, F., Codio, C., Rochette, C., Paradis, I., Drouin, R., and Simard, L. R. (2005). Characterization of the survival motor neuron (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated P19 cells, Biochem J. 385, 433–443.

    Article  PubMed  CAS  Google Scholar 

  47. Vigneault, F. and Drouin, R. (2005). Optimal conditions and specific characteristics of Vent exoDNA polymerase in ligation-mediated polymerase chain reaction protocols, Biochem. Cell. Biol. 83, 147–165.

    Article  PubMed  CAS  Google Scholar 

  48. Drouin, R., Gao, S., and Holmquist, G. P. (1996). Agarose gel electrophoresis for DNA damage analysis. In Technologies for Detection of DNA Damage and Mutations (Pfeifer, G.P., Ed.), pp 37–43, Plenum, New York.

    Google Scholar 

  49. Drouin, R., Rodriguez, H., Holmquist, G. P., and Akman, S. A. (1996). Ligation-mediated PCR for analysis of oxidative damage. In Technologies for Detection of DNA Damage and Mutations (Pfeifer, G.P., Ed.), pp 211–225, Plenum, New York.

    Google Scholar 

  50. Mueller, P. R. and Wold, B. (1991). Ligation-mediated PCR: applications to genomic footprinting, Methods, 20–31.

    Google Scholar 

  51. Iverson, B. L. and Dervan, P. B. (1987). Adenine specific DNA chemical sequencing reaction, Nucleic Acids Res. 15, 7823–7830.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang, L. and Gralla, J. D. (1989). In situ nucleoprotein structure at the SV40 major late promoter: melted and wrapped DNA flank the start site, Genes Dev. 3, 1814–1822.

    Article  PubMed  CAS  Google Scholar 

  53. Fry, M. and Loeb, L. A. (1994). The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure, Proc. Natl. Acad. Sci. U S A. 91, 4950–4954.

    Article  PubMed  CAS  Google Scholar 

  54. Rychlik, W. (1993). Selection of primers for polymerase chain reaction. In PCR Protocols: Current Methods and Applications (White, B., Ed.), pp 31–40, Humana, Totowa, NJ.

    Chapter  Google Scholar 

  55. Hornstra, I. K. and Yang, T. P. (1992). Multiple in vivo footprints are specific to the active allele of the X-linked human hypoxanthine phosphoribosyltransferase gene 5′ region: implications for X chromosome inactivation, Mol. Cell. Biol. 12, 5345–5354.

    PubMed  CAS  Google Scholar 

  56. Hornstra, I. K. and Yang, T. P. (1993). In vivo footprinting and genomic sequencing by ligation-mediated PCR, Anal. Biochem. 213, 179–193.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Genetic Diseases Network (MRC/NSERC NCE program) and the Canada Research Chair. R. Drouin holds the Canada Research Chair in “Genetics, Mutagenesis and Cancer.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régen Drouin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Drouin, R., Bastien, N., Millau, JF., Vigneault, F., Paradis, I. (2009). In Cellulo DNA Analysis (LMPCR Footprinting). In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics