Skip to main content

Electrophoretic Mobility Shift Assays for the Analysis of DNA-Protein Interactions

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

Electromobility shift assay is a simple, efficient, and rapid method for the study of specific DNA–protein interactions. It relies on the reduction in the electrophoretic mobility conferred to a DNA fragment by an interacting protein. The technique is suitable to qualitative, quantitative, and kinetic analyses. It can also be used to analyze conformational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garner, M.M. and Revzin, A. (1981). A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9, 3047–3060.

    Article  PubMed  CAS  Google Scholar 

  2. Fried, M. and Crothers, D.M. (1981). Equilibria and kinetics of lac repressor–operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525.

    Article  PubMed  CAS  Google Scholar 

  3. Gerstle, J.T. and Fried, M.G. (1993). Measurement of binding kinetics using the gel electrophoresis mobility shift assay. Electrophoresis 14, 725–731.

    Article  PubMed  CAS  Google Scholar 

  4. Fried, M.G. and Daugherty, M.A. (1998). Electrophoretic analysis of multiple protein–DNA interactions. Electrophoresis 19, 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  5. Cann, J.R. (1998). Theoretical studies on the mobility-shift assay of protein–DNA complexes. Electrophoresis 19, 127–141.

    Article  PubMed  CAS  Google Scholar 

  6. Cann, J.R. (1989). Phenomenological theory of gel electrophoresis of protein–nucleic acid complexes. J. Biol. Chem. 264, 17032–17040.

    PubMed  CAS  Google Scholar 

  7. Vossen, K.M. and Fried, M.G. (1997). Sequestration stabilizes lac repressor–DNA complexes during gel electrophoresis. Anal. Biochem. 245, 85–92.

    Article  PubMed  CAS  Google Scholar 

  8. Cann, J.R. (1997). Models of mobility-shift assay of complexes between dimerizing protein and DNA. Electrophoresis 18, 1092–1097.

    Article  PubMed  CAS  Google Scholar 

  9. Suske, G., Gross, B. and Beato, M. (1989). Non-radioactive method to visualize specific DNA–protein interactions in the band shift assay. Nucleic Acids Res. 17, 4405.

    Article  PubMed  CAS  Google Scholar 

  10. Laniel, M.A., Bergeron, M.J., Poirier, G.G. and Guérin, S.L. (1997). A nuclear factor other than Sp1 binds the GC-rich promoter of the gene encoding rat poly(ADP-ribose) polymerase in vitro. Biochem. Cell Biol. 75, 427–434.

    Article  PubMed  CAS  Google Scholar 

  11. Kironmai, K.M., Muniyappa, K., Friedman, D.B., Hollingsworth, N.M. and Byers, B. (1998). DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 1424–1435.

    PubMed  CAS  Google Scholar 

  12. Wolf, S.S., Hopley, J.G. and Schweizer, M. (1994). The application of 33P-labeling in the electrophoretic mobility shift assay. Biotechniques 16, 590–592.

    PubMed  CAS  Google Scholar 

  13. Ludwig, L.B., Hughes, B.J. and Schwartz, S.A. (1995). Biotinylated probes in the electrophoretic mobility shift assay to examine specific dsDNA, ssDNA or RNA–protein interactions. Nucleic Acids Res. 23, 3792–3793.

    Article  PubMed  CAS  Google Scholar 

  14. Ramanujam, P., Fogerty, S., Heiser, W. and Jolly, J. (1990). Fast gel electrophoresis to analyze DNA–protein interactions. Biotechniques 8, 556–563.

    PubMed  CAS  Google Scholar 

  15. Vanek, P.G., Fabian, S.J., Fisher, C.L., Chirikjian, J.G. and Collier, G.B. (1995). Alternative to polyacrylamide gels improves the electrophoretic mobility shift assay. Biotechniques 18, 704–706.

    PubMed  CAS  Google Scholar 

  16. Chandrasekhar, S., Souba, W.W. and Abcouwer, S.F. (1998). Use of modified agarose gel electrophoresis to resolve protein–DNA complexes for electrophoretic mobility shift assay. Biotechniques 24, 216–218.

    PubMed  CAS  Google Scholar 

  17. Revzin, A. (1989). Gel electrophoresis assays for DNA–protein interactions. Biotechniques 7, 346–355.

    PubMed  CAS  Google Scholar 

  18. Hassanain, H.H., Dai, W. and Gupta, S.L. (1993). Enhanced gel mobility shift assay for DNA-binding factors. Anal. Biochem. 213, 162–167.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, X.Y., Asiedu, C.K., Supakar, P.C. and Ehrlich, M. (1992). Increasing the activity of affinity-purified DNA-binding proteins by adding high concentrations of nonspecific proteins. Anal. Biochem. 201, 366–374.

    Article  PubMed  CAS  Google Scholar 

  20. Murakami, Y., Huberman, J.A. and Hurwitz, J. (1996). Identification, purification, and molecular cloning of autonomously replicating sequence-binding protein 1 from fission yeast Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 93, 502–507.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, W., Shields, J.M., Sogawa, K., Fujii-Kuriyama, Y. and Yang, V.W. (1998). The gut-enriched Kruppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J. Biol. Chem. 273, 17917–17925.

    Article  PubMed  CAS  Google Scholar 

  22. Tyree, C.M., George, C.P., Lira-DeVito, L.M., Wampler, S.L., Dahmus, M.E., Zawel, L. and Kadonaga, J.T. (1993). Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 7, 1254–1265.

    Article  PubMed  CAS  Google Scholar 

  23. Gille, J., Swerlick, R.A. and Caughman, S.W. (1997). Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation. EMBO J. 16, 750–759.

    Article  PubMed  CAS  Google Scholar 

  24. Roy, A.L., Du, H., Gregor, P.D., Novina, C.D., Martinez, E. and Roeder, R.G. (1997). Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J. 16, 7091–7104.

    Article  PubMed  CAS  Google Scholar 

  25. Ng, J.Y. and Marians, K.J. (1996). The ordered assembly of the phiX174-type primosome. I. Isolation and identification of intermediate protein–DNA complexes. J. Biol. Chem. 271, 15642–15648.

    Article  PubMed  CAS  Google Scholar 

  26. Wakasugi, M. and Sancar, A. (1998). Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc. Natl Acad. Sci. U. S. A. 95, 6669–6674.

    Article  PubMed  CAS  Google Scholar 

  27. Gaudreault, M., Vigneault, F., Leclerc, S. and Guérin, S.L. (2007). Laminin reduces expression of the human alpha6 integrin subunit gene by altering the level of the transcription factors Sp1 and Sp3. Invest. Ophthalmol. Vis. Sci. 48(8), 3490–3505.

    Article  PubMed  Google Scholar 

  28. Robidoux, S., Guérin, S.L., Eskild, W., Kroepelin, C.F. and Hansson, V. (1992). Salt-dependent formation of DNA/protein complexes in vitro, as viewed by the gel mobility shift assay. Biotechniques 13, 354–357.

    PubMed  CAS  Google Scholar 

  29. Laniel, M.A. and Guérin, S.L. (1998). Improving sensitivity of the electrophoretic mobility shift assay by restricting tissue phosphatase activities. Biotechniques 24, 964–970.

    PubMed  CAS  Google Scholar 

  30. Potvin, F., Roy, R.J., Poirier, G.G. and Guérin, S.L. (1993). The US-1 element from the gene encoding rat poly(ADP-ribose) polymerase binds the transcription factor Sp1. Eur. J. Biochem. 215, 73–80.

    Article  PubMed  CAS  Google Scholar 

  31. Dasgupta, A. and Scovell, W.M. (2003). TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex. Biochim. Biophys. Acta 1627, 101–110.

    PubMed  CAS  Google Scholar 

  32. Jing, D., Beechem, J.M. and Patton, W.F. (2004). The utility of a two-color fluorescence electrophoretic mobility shift assay procedure for the analysis of DNA replication complexes. Electrophoresis 25, 2439–2446.

    Article  PubMed  CAS  Google Scholar 

  33. Smider, V., Hwang, B.J. and Chu, G. (2006). Electrophoretic mobility shift assays to study protein binding to damaged DNA. Methods Mol. Biol. 314, 323–344.

    Article  PubMed  CAS  Google Scholar 

  34. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G. and Smith, J.A. (eds.) (1992). Short Protocols in Molecular Biology. Wiley, New York, NY.

    Google Scholar 

  35. Bergeron, M.J., Leclerc, S., Laniel, M.A., Poirier, G.G. and Guérin, S.L. (1997). Transcriptional regulation of the rat poly(ADP-ribose) polymerase gene by Sp1. Eur. J. Biochem. 250, 342–353.

    Article  PubMed  CAS  Google Scholar 

  36. Granger-Schnarr, M., Lloubes, R., de Murcia, G. and Schnarr, M. (1988). Specific protein–DNA complexes: immunodetection of the protein component after gel electrophoresis and Western blotting. Anal. Biochem. 174, 235–238.

    Article  PubMed  CAS  Google Scholar 

  37. Osborn, M.T., Herrin, K., Buzen, F.G., Hurlburt, B.K. and Chambers, T.C. (1999). Electrophoretic mobility shift assay coupled with immunoblotting for the identification of DNA-binding proteins. Biotechniques 27, 887–890, 892.

    PubMed  CAS  Google Scholar 

  38. Demczuk, S., Harbers, M. and Vennström, B. (1993). Identification and analysis of all components of a gel retardation assay by combination with immunoblotting. Proc. Natl Acad. Sci. USA 90, 2574–2578.

    Article  PubMed  CAS  Google Scholar 

  39. Dyer, R.B. and Herzog, N.K. (1995). Immunodepletion EMSA: a novel method to identify proteins in a protein–DNA complex. Nucleic Acids Res. 23, 3345–3346.

    PubMed  CAS  Google Scholar 

  40. Yamamoto, H. (1997). DNA mobility shift assay coupled with SDS-PAGE for detection of DNA-binding proteins. Biotechniques 22, 210–211.

    PubMed  CAS  Google Scholar 

  41. Williams, M., Brys, A., Weiner, A.M. and Maizels, N. (1992). A rapid method for determining the molecular weight of a protein bound to nucleic acid in a mobility shift assay. Nucleic Acids Res. 20, 4935–4936.

    Article  PubMed  CAS  Google Scholar 

  42. Adachi, Y., Chen, W., Shang, W.H. and Kamata, T. (2005). Development of a direct and sensitive detection method for DNA-binding proteins based on electrophoretic mobility shift assay and iodoacetamide derivative labeling. Anal. Biochem. 342, 348–351.

    Article  PubMed  CAS  Google Scholar 

  43. Funabashi, H., Ubukata, M., Ebihara, T., Aizawa, M., Mie, M. and Kobatake, E. (2007). Assessment of small ligand–protein interactions by electrophoretic mobility shift assay using DNA-modified ligand as a sensing probe. Biotechnol. Lett. 29, 785–789.

    Article  PubMed  CAS  Google Scholar 

  44. Hope, I.A. and Struhl, K. (1985). GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43, 177–188.

    Article  PubMed  CAS  Google Scholar 

  45. Filion, G.J., Fouvry, L. and Defossez, P.A. (2006). Using reverse electrophoretic mobility shift assay to measure and compare protein–DNA binding affinities. Anal. Biochem. 357, 156–158.

    Article  PubMed  CAS  Google Scholar 

  46. Ronai, Z., Wang, Y., Khandurina, J., Budworth, P., Sasvari-Szekely, M., Wang, X. and Guttman, A. (2003). Transcription factor binding study by capillary zone electrophoretic mobility shift assay. Electrophoresis 24, 96–100.

    Article  PubMed  CAS  Google Scholar 

  47. Chuang, Y.J., Huang, J.W., Makamba, H., Tsai, M.L., Li, C.W. and Chen, S.H. (2006). Electrophoretic mobility shift assay on poly(ethylene glycol)-modified glass microchips for the study of estrogen responsive element binding. Electrophoresis 27, 4158–4165.

    Article  PubMed  CAS  Google Scholar 

  48. Fraga, M.F., Ballestar, E. and Esteller, M. (2003). Capillary electrophoresis-based method to quantitate DNA–protein interactions. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 789, 431–435.

    Article  PubMed  CAS  Google Scholar 

  49. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning, A Laboratory Manual. Cold Spring Harbor, New York, NY.

    Google Scholar 

  50. Harvey, M., Brisson, I. and Guérin, S.L. (1993). A simple apparatus for fast and inexpensive recovery of DNA from polyacrylamide gels. Biotechniques 14, 942–948.

    PubMed  CAS  Google Scholar 

  51. Larouche, K., Leclerc, S., Giasson, M. and Guérin, S.L. (1996). Multiple nuclear regulatory proteins bind a single cis-acting promoter element to control basal transcription of the human alpha 4 integrin gene in corneal epithelial cells. DNA Cell Biol. 15, 779–792.

    Article  PubMed  CAS  Google Scholar 

  52. Leclerc, S., Eskild, W. and Guérin, S.L. (1997). The rat growth hormone and human cellular retinol binding protein 1 genes share homologous NF1-like binding sites that exert either positive or negative influences on gene expression in vitro. DNA Cell Biol. 16, 951–967.

    Article  PubMed  CAS  Google Scholar 

  53. Ossipow, V., Laemmli, U.K. and Schibler, U. (1993). A simple method to renature DNA-binding proteins separated by SDS-polyacrylamide gel electrophoresis. Nucleic Acids Res. 21, 6040–6041.

    Article  PubMed  CAS  Google Scholar 

  54. Graves, B.J., Johnson, P.F. and McKnight, S.L. (1986). Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene. Cell 44, 565–576.

    Article  PubMed  CAS  Google Scholar 

  55. Roy, R.J., Gosselin, P. and Guérin, S.L. (1991). A short protocol for micro-purification of nuclear proteins from whole animal tissue. Biotechniques 11, 770–777.

    PubMed  CAS  Google Scholar 

  56. Robidoux, S., Gosselin, P., Harvey, M., Leclerc, S. and Guérin, S.L. (1992). Transcription of the mouse secretory protease inhibitor p12 gene is activated by the developmentally regulated positive transcription factor Sp1. Mol. Cell. Biol. 12, 3796–3806.

    PubMed  CAS  Google Scholar 

  57. Dynan, W.S. and Tjian, R. (1983). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79–87.

    Article  PubMed  CAS  Google Scholar 

  58. Saffer, J.D., Jackson, S.P. and Annarella, M.B. (1991). Developmental expression of Sp1 in the mouse. Mol. Cell. Biol. 11, 2189–2199.

    PubMed  CAS  Google Scholar 

  59. McComb, R.B., Bowers, G.N. and Posen, S. (1979). Alkaline Phosphatase. Plenum, New York, NY.

    Book  Google Scholar 

  60. Ruscher, K., Reuter, M., Kupper, D., Trendelenburg, G., Dirnagl, U. and Meisel, A. (2000). A fluorescence based non-radioactive electrophoretic mobility shift assay. J. Biotechnol. 78, 163–170.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, N., Xu, Y., Zhang, Z. and Xiong, W. (2003). A nonradioactive method for detecting DNA-binding activity of nuclear transcription factors. J. Huazhong Univ. Sci. Technol. Med. Sci. 23, 227–229.

    Article  PubMed  CAS  Google Scholar 

  62. Jing, D., Agnew, J., Patton, W.F., Hendrickson, J. and Beechem, J.M. (2003). A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels. Proteomics 3, 1172–1180.

    Article  PubMed  CAS  Google Scholar 

  63. Roder, K. and Schweizer, M. (2001). Running-buffer composition influences DNA–protein and protein–protein complexes detected by electrophoretic mobility-shift assay (EMSA). Biotechnol. Appl. Biochem. 33, 209–214.

    Article  PubMed  CAS  Google Scholar 

  64. Larouche, K., Bergeron, M.J., Leclerc, S. and Guérin, S.L. (1996). Optimization of competitor poly(dI–dC).poly(dI–dC) levels is advised in DNA–protein interaction studies involving enriched nuclear proteins. Biotechniques 20, 439–444.

    PubMed  CAS  Google Scholar 

  65. Sidorova, N.Y. and Rau, D.C. (2000). The dissociation rate of the EcoRI–DNA-specific complex is linked to water activity. Biopolymers 53, 363–368.

    Article  PubMed  CAS  Google Scholar 

  66. Sidorova, N.Y., Muradymov, S. and Rau, D.C. (2005). Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays. Nucleic Acids Res. 33, 5145–5155.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The experimental data included in this chapter were supported by a grant from the National Science and Engineering Research Council of Canada (NSERC) (grant #138624-06) to S.L.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain L. Guérin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gaudreault, M., Gingras, ME., Lessard, M., Leclerc, S., Guérin, S.L. (2009). Electrophoretic Mobility Shift Assays for the Analysis of DNA-Protein Interactions. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics