Skip to main content

RNA and DNA Microarrays

  • Protocol
  • First Online:
Biological Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 671))

Abstract

The development of microarray technology has revolutionized RNA and deoxyribonucleic acid (DNA) research. In contrast with traditional biological assays, microarrays allow the simultaneous measurement of tens of thousands of messenger RNA (mRNA) transcripts for gene expression or of genomic DNA fragments for copy number variation analysis. Over the past decade, genome-wide RNA or DNA microarray analysis has become an essential component of biology and biomedical research. The successful use of microarrays requires attention to unique issues of experimental design and execution. This chapter provides an overview of the methodology and applications of RNA and DNA microarrays in various areas of biological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann, R.D., et al., (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223): p. 496–512.

    Article  CAS  Google Scholar 

  2. International Human Genome Sequencing Consortium, (2004). Finishing the euchromatic sequence of the human genome. Nature, 431(7011): p. 931–945.

    Article  Google Scholar 

  3. Schena, M., (1996).Genome analysis with gene expression microarrays. Bioessays, 18(5): p. 427–431.

    Article  CAS  Google Scholar 

  4. Vissers, L.E.L.M., et al., (2005). Identification of disease genes by whole genome CGH arrays. Hum. Mol. Genet, 14(suppl_2): p. R215–223.

    Article  CAS  Google Scholar 

  5. Fu, S., et al., (2008). Peripheral arterial occlusive disease: global gene expression analyses suggest a major role for immune and inflammatory responses. BMC Genomics, 9(1): p. 369.

    Article  Google Scholar 

  6. Lenk, G.M., et al., (2007). Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics, 8: p. 237–249.

    Article  Google Scholar 

  7. Seo, D., et al., (2004). Gene expression phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol, 24: p. 1922–1927.

    Article  CAS  Google Scholar 

  8. Singhal, S., et al., (2003). Gene expression profiling of malignant mesothelioma. Clin Cancer Res, 9: p. 3080–3097.

    CAS  Google Scholar 

  9. Schena, M., et al., (1996). Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA, 93(20): p. 10614–10619.

    Article  CAS  Google Scholar 

  10. DeRisi, J., et al., (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet, 14(4): p. 457–460.

    Article  CAS  Google Scholar 

  11. Milano, A., et al., (2008).Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One, 3(7): p. e2696.

    Article  Google Scholar 

  12. Schena, M., et al., (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235): p. 467–470.

    Article  CAS  Google Scholar 

  13. Lander, E.S., et al., (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): p. 860–921.

    Article  CAS  Google Scholar 

  14. Bentley, D.R., et al., (2008). Accurate whole human genome sequencing using reversible termi­nator chemistry. Nature, 456(7218): p. 53–59.

    Article  CAS  Google Scholar 

  15. Venter, J.C., et al., (2001). The sequence of the human genome. Science, 291(5507): p. 1304–1351.

    Article  CAS  Google Scholar 

  16. Cerdeno-Tarraga, A.M., et al., (2003). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res, 31(22): p. 6516–6523.

    Article  CAS  Google Scholar 

  17. Rew, D.A., (2004). The sequencing of the rat genome. Eur J Surg Oncol, 30(8): p. 905–906.

    CAS  Google Scholar 

  18. Tettelin, H., et al., (2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science, 293(5529): p. 498–506.

    Article  CAS  Google Scholar 

  19. Nierman, W.C., et al., (2001). Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA, 98(7): p. 4136–4141.

    Article  CAS  Google Scholar 

  20. Check, E., (2002). Draft mouse genome makes public debut. Nature, 417(6885): p. 106.

    Article  CAS  Google Scholar 

  21. Galitski, T., et al., (1999). Ploidy regulation of gene expression. Science, 285(5425): p. 251–254.

    Article  CAS  Google Scholar 

  22. Tu, B.P., et al., (2005). Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 310(5751): p. 1152–1158.

    Article  CAS  Google Scholar 

  23. Iyer, V.R., et al., (1999). The transcriptional program in the response of human fibroblasts to serum. Science, 283(5398): p. 83–87.

    Article  CAS  Google Scholar 

  24. Plescia, C., C. Rogler, and L. Rogler, (2001). Genomic expression analysis implicates Wnt signaling pathway and extracellular matrix alterations in hepatic specification and differentiation of murine hepatic stem cells. Differentiation, 68(4–5): p. 254–269.

    Article  CAS  Google Scholar 

  25. Lee, K.-H., D.-H. Yu, and Y.-S. Lee, (2009). Gene expression profiling of rat cerebral cortex development using cDNA microarrays. Neurochemical Res, 34(6): p. 1030–1038.

    Article  CAS  Google Scholar 

  26. Nikolova-Krstevski, V., et al., (2008). Gene expression analysis of embryonic stem cells expressing VE-cadherin (CD144) during endothelial differentiation. BMC Genomics, 9(1): p. 240.

    Article  Google Scholar 

  27. Zhu, H., H. Yang, M. R. Owen, (2007). Combined microarray analysis uncovers self-renewal related signaling in mouse embryonic stem cells. Syst Synth Biol, 4(1): p. 171–181.

    Article  Google Scholar 

  28. Chen, V.C., et al., (2008). Notch signaling respecifies the hemangioblast to a cardiac fate. Nat Biotech, 26(10): p. 1169–1178.

    Article  CAS  Google Scholar 

  29. Kakar, S.S., et al., (2003). Identification of distinct gene expression profiles associated with treatment of LbetaT2 cells with gonadotropin-releasing hormone agonist using microarray analysis. Gene, 308: p. 67–77.

    Article  CAS  Google Scholar 

  30. Malyala, A., et al., (2004). Suppression subtractive hybridization and microarray identification of estrogen-regulated hypothalamic genes. Neurochem Res, 29(6): p. 1189–1200.

    Article  CAS  Google Scholar 

  31. Auger, C.J., H.M. Jessen, and A.P. Auger, (2006). Microarray profiling of gene expression patterns in adult male rat brain following acute progesterone treatment. Brain Res, 1067(1): p. 58–66.

    Article  CAS  Google Scholar 

  32. Elin Lehrmann, W.J.F., (2008). Transcriptional correlates of human substance use. Ann N Y Acad Sci, 1139(Drug Addiction: Research Frontiers and Treatment Advances): p. 34–42.

    Article  Google Scholar 

  33. Runne, H., et al., (2008). Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci, 28(39): p. 9723–9731.

    Article  CAS  Google Scholar 

  34. Salas, R., et al., (2008). Nicotine relieves anxiogenic-like behavior in acetylcholinesterase-R overexpressing mice but not in wild-type mice. Mol Pharmacol, 74(6): p. 1641–1648, mol.108.048454.

    Article  CAS  Google Scholar 

  35. Bergström, A., et al., (2007). Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression – a gene expression study. J Mol Neurosci, 33: p. 201–215.

    Article  Google Scholar 

  36. Golub, T.R., et al., (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439): p. 531–537.

    Article  CAS  Google Scholar 

  37. Perou, C.M., et al., (2000). Molecular portraits of human breast tumours. Nature, 406(6797): p. 747–752.

    Article  CAS  Google Scholar 

  38. Garber, M.E., et al., (2001). Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA, 98(24): p. 13784–13789.

    Article  CAS  Google Scholar 

  39. Alizadeh, A.A., et al., (2001). Towards a novel classification of human malignancies based on gene expression patterns. J Pathol, 195(1): p. 41–52.

    Article  CAS  Google Scholar 

  40. Sørlie, T., et al., (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 98(19): p. 10869–10874.

    Article  Google Scholar 

  41. Murphy, D.J. and J.R. Brown, (2007). Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infectious Disease, 7: p. 84.

    Article  Google Scholar 

  42. Helbig, K.J., et al., (2008). Differential expression of the CXCR3 ligands in chronic hepatitis C, and their modulation by HCV in vitro. J Virol, 83(2): p. 836–846, JVI.01388-08.

    Article  Google Scholar 

  43. Mikhailovich, V., et al., (2008). DNA microarrays in the clinic: infectious diseases. Bioessays, 30(7): p. 673–682.

    Article  CAS  Google Scholar 

  44. Wright, H.J., et al., (2008). Periodontitis associates with a type 1 IFN signature in peripheral blood neutrophils. J Immunol, 181(8): p. 5775–5784.

    CAS  Google Scholar 

  45. Kaminski, N., et al., (2000). Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc Natl Acad Sci USA, 97(4): p. 1778–1783.

    Article  CAS  Google Scholar 

  46. Kinter, J., T. Zeis, and N. Schaeren-Wiemers, (2008). RNA profiling of MS brain tissues. Int MS J, 15(2): p. 51–58.

    CAS  Google Scholar 

  47. Satoh, J-i., et al., (2008). Neuromyelitis optica/Devic’s disease: gene expression profiling of brain lesions. Neuropathology, 28(6): p. 561–576.

    Google Scholar 

  48. Grünblatt, E., et al., (2007). Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J Alzheimers Dis, 12(4): p. 291–311.

    Google Scholar 

  49. Mash, D.C., et al., (2007). Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One, 2(11): p. e1187.

    Article  Google Scholar 

  50. Colantuoni, C., et al., (2008). Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex. Brain Struct Funct, 213(1): p. 255–271.

    Article  Google Scholar 

  51. Iwamoto, K., M. Bundo, and T. Kato, (2005). Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet, 14(2): p. 241–253.

    Article  CAS  Google Scholar 

  52. Chin, K.-V. and A.N.T. Kong, (2002). Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharmaceutical Res, 19(12): p. 1773–1778.

    Article  CAS  Google Scholar 

  53. Duncan, C.E., A.F. Chetcuti, and P.R. Schofield, (2008). Coregulation of genes in the mouse brain following treatment with clozapine, haloperidol, or olanzapine implicates altered potassium channel subunit expression in the mechanism of antipsychotic drug action. Psychiatr Genet, 18(5): p. 226–239.

    Article  Google Scholar 

  54. Debouck, C. and P.N. Goodfellow, (1999). DNA microarrays in drug discovery and development. Nat Genet, 21(1 Suppl): p. 48–50.

    Article  CAS  Google Scholar 

  55. Gerhold, D.L., R.V. Jensen, and S.R. Gullans, (2002). Better therapeutics through microarrays. Nat Genet, 32(Suppl): p. 547–551.

    Article  CAS  Google Scholar 

  56. Kresse, S., et al., (2008). DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH. Mol Cancer, 7(1): p. 48.

    Article  Google Scholar 

  57. Ankita, P., et al., (2008). Validation of a targeted DNA microarray for the clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia. Am J Hematol, 83(7): p. 540–546.

    Article  CAS  Google Scholar 

  58. Shaffer, LG., et al., (1993). Familial interstitial deletion 11(p11.12p12) associated with parietal foramina, brachymicrocephaly, and mental retardation. Am J Med Genet, 45(5): p. 581–583.

    Article  CAS  Google Scholar 

  59. Kallioniemi, A., et al., (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083): p. 818–821.

    Article  CAS  Google Scholar 

  60. Mizuguchi, T., et al., (2008). Microarray comparative genomic hybridization analysis of 59 patients with schizophrenia. J Hum Genet, 53(10): p. 914–919.

    Article  CAS  Google Scholar 

  61. Jiang, M., et al., (2008). Simultaneously detection of genomic and expression alterations in prostate cancer using cDNA microarray. Prostate, 68(14): p. 1496–1509.

    Article  CAS  Google Scholar 

  62. Staaf, J., et al., (2008). Detection and precise mapping of germline rearrangements in <I>BRCA1, BRCA2, MSH2</I>, and <I>MLH1</I> using zoom-in array comparative genomic hybridization (aCGH). Hum Mutat, 29(4): p. 555–564.

    Article  CAS  Google Scholar 

  63. National Institutes of Health, (2001). Consensus conference 2000: adjuvant therapy for breast cancer. National Institutes of Health Consensus Development Conference Statement November 1–3, 2000. Cancer Control, 8(1): p. 55.

    Google Scholar 

  64. Goldhirsch, A., et al., (2003). Meeting highlights: Updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol, 21(17): p. 3357–3365.

    Article  Google Scholar 

  65. van ’t Veer, L.J., et al., (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871): p. 530–536.

    Article  Google Scholar 

  66. van de Vijver, M.J., et al., (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med, 347(25): p. 1999–2009.

    Article  Google Scholar 

  67. Wang, Y., et al., (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365(9460): p. 671–679.

    CAS  Google Scholar 

  68. Foekens, J.A., et al., (2006). Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol, 24(11): p. 1665–1671.

    Article  CAS  Google Scholar 

  69. Chang, J.C., et al., (2003). Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet, 362(9381): p. 362–369.

    Article  CAS  Google Scholar 

  70. Ma, X.-J., et al., (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell, 5(6): p. 607–616.

    Article  CAS  Google Scholar 

  71. Ayers, M., et al., (2004). Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol, 22(12): p. 2284–2293.

    Article  CAS  Google Scholar 

  72. Gonzalez-Neira, A., et al., (2007). Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies. BMC Genomics, 8(1): p. 299–.

    Article  Google Scholar 

  73. Climent, J., et al., (2007). Characterization of breast cancer by array comparative genomic hybridization (1).(MINIREVIEW/MINISYNTHESE)(Clinical report). Biochem Cell Biol, 85(4): p. 497–508.

    Article  CAS  Google Scholar 

  74. Telenius, H., et al., (1992). Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 13(3): p. 718–725.

    Article  CAS  Google Scholar 

  75. Zhang, L., et al., (1992). Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA, 89(13): p. 5847–5851.

    Article  CAS  Google Scholar 

  76. Hosono, S., et al., (2003). Unbiased whole-genome amplification directly from clinical samples. Genome Res, 13(5): p. 954–964.

    Article  CAS  Google Scholar 

  77. Paez, J.G., et al., (2004). Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res, 32(9): p. e71.

    Article  Google Scholar 

  78. Brown, P.O., (2007). Ozone News [cited 1; Available from: http://cmgm.stanford.edu/pbrown/protocols/OzoneNewsVol1.pdf.

  79. Brown, P.O. Ozone News 2. 2007 [cited; Available from: http://cmgm.stanford.edu/pbrown/protocols/OzoneNewsVol2.pdf.

  80. Fare, T.L., et al., (2003). Effects of atmospheric ozone on microarray data quality. Anal Chem, 75(17): p. 4672–4675.

    Article  CAS  Google Scholar 

  81. Klass, D. and D. Hogan, (2007). The Ozone Annihilator [cited; Available from: http://cmgm.stanford.edu/pbrown/protocols/Ozone_Prevention.pdf.

Download references

Acknowledgments

Our microarray research is supported by grants from NIH NIDDK and by a research contract from NIAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart C. Sealfon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sealfon, S.C., Chu, T.T. (2011). RNA and DNA Microarrays. In: Khademhosseini, A., Suh, KY., Zourob, M. (eds) Biological Microarrays. Methods in Molecular Biology, vol 671. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-551-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-551-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-95-4

  • Online ISBN: 978-1-59745-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics