Skip to main content

Subcellular Imaging of Cancer Cells in Live Mice

  • Protocol
Reporter Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 411))

  • 1527 Accesses

Abstract

Dual-color fluorescent cells, with one color in the nucleus and the other in the cytoplasm, enable real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) is expressed in the cytoplasm of cancer cells, and green fluorescent protein (GFP) linked to histone H2B is expressed in the nucleus. Nuclear GFP expression allows visualization of nuclear dynamics, whereas simultaneous cytoplasmic RFP expression allows visualization of nuclear-cytoplasmic ratios as well as simultaneous cell and nuclear shape changes. This methodology has allowed us to show that the cells and nuclei of cancer cells in the capillaries elongate to fit the width of these vessels. The average length of the major axis of the cancer cells in the capillaries increased to approximately four times their normal length. The nuclei increased their length 1.6 times. Cancer cells in capillaries over 8 μm in diameter were shown to migrate at up to 48.3 μm/h. With the use of dual-color fluorescent cells and the Olympus OV100, a highly sensitive whole-mouse imaging system with both macrooptics and microoptics, it is possible to achieve subcellular real-time imaging of cancer cell trafficking in live mice. Extravasation can also be imaged in real time. Dual-color imaging showed that cytoplasmic processes of cancer cells exited the vessels first, with nuclei following along the cytoplasmic projections. Dual-color in vivo cellular imaging was also used to visualize trafficking, nuclear-cytoplasmic dynamics, and the viability of cancer cells after their injection into the portal vein of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamauchi, K., Yang, M., Jiang, P., et al. (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res. 66, 4208–4214.

    Article  PubMed  CAS  Google Scholar 

  2. Tsuji, K., Yamauchi, K., Yang, M., et al. (2006) Dual-color imaging of nuclear cytoplasmic dynamics, viability, and proliferation of cancer cells in the portal vein area. Cancer Res. 66, 303–306.

    Article  PubMed  CAS  Google Scholar 

  3. Chambers, A. F., Groom, A. C., and MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572.

    Article  PubMed  CAS  Google Scholar 

  4. Lin, W. C., Pretlow, T. P., Pretlow, T. G. II, and Culp, L. A. (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res. 50, 2808–2817.

    PubMed  CAS  Google Scholar 

  5. Yamamoto, N., Jiang, P., Yang, M., et al. (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res. 64, 4251–4256.

    Article  PubMed  CAS  Google Scholar 

  6. Brown, E. B., Campbell, R. B., Tsuzuki, Y., et al. (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868.

    Article  PubMed  CAS  Google Scholar 

  7. Ciancio, S. J., Coburn, M., and Hornsby, P. J. (2000) Cutaneous window for in vivo observations of organs and angiogenesis. J. Surg. Res. 92, 228–232.

    Article  PubMed  CAS  Google Scholar 

  8. Naumov, G. N., Wilson, S. M., MacDonald, I. C., et al. (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo video-microscopy, to monitor steps in tumor metastasis. J. Cell Sci. 112, 1835–1842.

    PubMed  CAS  Google Scholar 

  9. Prasher, D. C., Eckenrode, V. K., Ward, W. W., et al. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.

    Article  PubMed  CAS  Google Scholar 

  10. Chalfie, M., Tu, Y., Euskirchen, G., et al. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng, L., Fu, J., Tsukamoto, A., and Hawley, R. G. (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat. Biotechnol. 14, 606–609.

    Article  PubMed  CAS  Google Scholar 

  12. Cody, C. W., Prasher, D. C., Westler, W. M., et al. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32, 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, F., Moss, L. G., and Phillips, G. N. Jr. (1996) The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251.

    Article  PubMed  CAS  Google Scholar 

  14. Morin, J. and Hastings, J. (1971) Energy transfer in a bioluminescent system. J. Cell Physiol. 77, 313–318.

    Article  PubMed  CAS  Google Scholar 

  15. Cormack, B., Valdivia, R., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  PubMed  CAS  Google Scholar 

  16. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.

    Article  PubMed  CAS  Google Scholar 

  17. Delagrave, S., Hawtin, R. E., Silva, C. M., et al. (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology 13, 151–154.

    Article  PubMed  CAS  Google Scholar 

  18. Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663–664.

    Article  PubMed  CAS  Google Scholar 

  19. Zolotukhin, S., Potter, M., Hauswirth, W. W., et al. (1996) A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654.

    PubMed  CAS  Google Scholar 

  20. Gross, L. A., Baird, G. S., Hoffman, R. C., et al. (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11,990–11,995.

    Article  CAS  Google Scholar 

  21. Fradkov, A. F., Chen, Y., Ding, L., et al. (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett. 479, 127–130.

    Article  PubMed  CAS  Google Scholar 

  22. Hoffman, R. M. (2002) Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 3, 546–556.

    Article  PubMed  CAS  Google Scholar 

  23. Condeelis, J. and Segall, J.E. (2003) Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3, 921–930.

    Article  PubMed  CAS  Google Scholar 

  24. Chishima, T., Miyagi, Y., Wang, X., et al. (1997) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res. 57, 2042–2047.

    PubMed  CAS  Google Scholar 

  25. Farina, K. L., Wyckoff, J. B., Rivera, J., et al. (1998) Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res. 58, 2528–2532.

    PubMed  CAS  Google Scholar 

  26. Yamauchi, K., Yang, M., Jiang, P., et al. (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res. 65, 4246–4252.

    Article  PubMed  CAS  Google Scholar 

  27. Huang, M. S., Wang, T. J., Liang, C. L., et al. (2002) Establishment of fluorescent lung carcinoma metastasis model and its real-time microscopic detection in SCID mice. Clin. Exp. Metastasis 19, 359–368.

    Article  PubMed  CAS  Google Scholar 

  28. Wyckoff, J. B., Jones, J. G., Condeelis, J. S., and Segall, J. E. (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60, 2504–2511.

    PubMed  CAS  Google Scholar 

  29. Mook, O. R. F., Marle, J. V., and Vreeling-Sindelarova, H. (2003) Visualization of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 38, 295–304.

    Article  PubMed  Google Scholar 

  30. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., and Muschel, R. J. (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6, 100–102.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, W., Wyckoff, J. B., Frohlich, V. C., et al. (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62, 6278–6288.

    PubMed  CAS  Google Scholar 

  32. Goswami, S., Sahai, E., Wyckoff, J. B., et al. (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283.

    Article  PubMed  CAS  Google Scholar 

  33. Chambers, A. F., Schmidt, E. E., MacDonald, I. C., Morris, V. L., and Groom, A. C. (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J. Natl. Cancer Inst. 84, 797–803.

    Article  PubMed  CAS  Google Scholar 

  34. Flach, J., Bossie, M., Vogel, J., et al. (1994) A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Mol. Cell. Biol. 14, 8399–8407.

    PubMed  CAS  Google Scholar 

  35. Kanda, T., Sullivan, K. F., and Wahl, G. M. (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385.

    Article  PubMed  CAS  Google Scholar 

  36. Manders, E. M., Visser, A. E., Koppen, A., et al. (2003) Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Res. 11, 537–547.

    Article  PubMed  CAS  Google Scholar 

  37. Lee. S. (1987) Experimental microsurgery. Igaka-Shoin, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hoffman, R.M. (2007). Subcellular Imaging of Cancer Cells in Live Mice. In: Anson, D.S. (eds) Reporter Genes. Methods in Molecular Biology, vol 411. Humana Press. https://doi.org/10.1007/978-1-59745-549-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-549-7_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-739-6

  • Online ISBN: 978-1-59745-549-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics