Skip to main content

Construction of Simple and Efficient DNA Vector-Based Short Hairpin RNA Expression Systems for Specific Gene Silencing in Mammalian Cells

  • Protocol
Gene Function Analysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 408))

Abstract

RNA interference (RNAi) is an evolutionarily conserved mechanism of posttranscriptional gene silencing induced by introducing the double-stranded RNAs (dsRNAs) into cells. Recent progress in RNAi-based gene-silencing techniques has revolutionarily advanced in studies of the functional genomics and molecular therapeutics. Among the widely used dsRNAs including exogenously synthetic and endogenously expressed small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), the shRNAs are more efficient than siRNAs on the induction of gene silencing and currently have evolved as an extremely powerful and the most popular gene silencing reagent. The DNA vector-based shRNA-expression systems provide not only a simple and effective way in inhibiting gene activities in either inheritable or inducible manner, but also a cost-effective tool in constructing the expression vectors. To fully explore the DNA vector-based shRNA-expression systems in RNAi-mediated gene-silencing techniques, four distinct RNA polymerase III (Pol III)- controlled type III promoter-based expression vectors are constructed including pHsH1, pHsU6, pMmH1, and pMmU6, which contain either the RNase P RNA H1 (H1) or small nuclear RNA U6 (U6) promoter from human and mouse. Moreover, to improve the constructing and screening efficiency for the shRNA-expression recombinant clones, these four DNA vectors are further reconstructed by inserting a stuffer of puromycin resistance gene (Puro R) between restriction enzyme ClaI and HindIII sites, which makes the preparation of vectors easy and simple for cloning the shRNA-expression sequences. Because of the ease, speed, and cost efficiency, these four improved DNA vector-based shRNA-expression vectors provide a simple, convenient, and efficient genesilencing system for analyzing specific gene functions in mammalian cells. Herein, the simple and practical procedures for the construction of DNA vector-based expression vectors, potential and rational design rules for the selection of effective RNAi-targeting sequences, efficient and costeffective cloning strategies for the construction of shRNA-expression cassettes, and effective and functional activity assays for the evaluation of expressed shRNAs are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  2. Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by doublestranded RNA. Nature 431, 343–349.

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  4. Carmell, M. A. and Hannon, G. J. (2004) RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol. 11, 214–218.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574.

    Article  CAS  PubMed  Google Scholar 

  6. Schwarz, D. S., Hutvagner, G., Haley, B., and Zamore, P. D. (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548.

    Article  CAS  PubMed  Google Scholar 

  7. Schramke, V. and Allshire, R. (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  8. Soifer, H. S., Zaragoza, A., Peyvan, M., Behlke, M. A., and Rossi, J. J. (2005) A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 33, 846–856.

    Article  CAS  PubMed  Google Scholar 

  9. Reinhart, B. J., Slack, F. J., Basson, M., et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  10. Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I., and Martienssen, R. A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837.

    Article  CAS  PubMed  Google Scholar 

  11. Matzke, M. A. and Birchler, J. A. (2005) RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35.

    Article  CAS  PubMed  Google Scholar 

  12. Shuey, D. J., McCallus, D. E., and Giordano, T. (2002) RNAi: gene-silencing in therapeutic intervention. Drug Discov. Today 7, 1040–1046.

    Article  CAS  PubMed  Google Scholar 

  13. Dorsett, Y. and Tuschl, T. (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3, 318–329.

    Article  CAS  PubMed  Google Scholar 

  14. Berns, K., Hijmans, E. M., Mullenders, J., et al. (2004) A large-scale screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437.

    Article  CAS  PubMed  Google Scholar 

  15. Paddison, P. J., Silva, J. M. L., Conklin, D. S., et al. (2004) A resource for largescale RNA-interference-based screens in mammals. Nature 428, 427–431.

    Article  CAS  PubMed  Google Scholar 

  16. Player, M. R. and Torrence, P. F. (1998) The 2-5 A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol. Ther. 78, 55–113.

    Article  CAS  PubMed  Google Scholar 

  17. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.

    Article  CAS  PubMed  Google Scholar 

  18. Gil, J. and Esteban, M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114.

    Article  CAS  PubMed  Google Scholar 

  19. Geiss, G., Jin, G., Guo, J., Bumgarner, R., Katze, M. G., and Sen, G. C. (2001) A comprehensive view of regulation of gene expression by double-stranded RNAmediated cell signaling. J. Biol. Chem. 276, 30,178–30,182.

    CAS  PubMed  Google Scholar 

  20. Samuel, C. E. (2001) Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809.

    Article  CAS  PubMed  Google Scholar 

  21. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  22. Elbashir, S. M., Harborth, J., Weber, K., and Tuschl, T. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213.

    Article  CAS  PubMed  Google Scholar 

  23. Siolas, D., Lerner, C., Burchard, J., et al. (2005) Synthetic shRNA as potent RNAi triggers. Nat. Biotechnol. 23, 227–231.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, N. S., Dohjima, T., Bauer, G., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.

    CAS  PubMed  Google Scholar 

  25. Miyagishi, M. and Taira, K. (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng, L., Liu, J., Batalov, S., et al. (2004) An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 135–140.

    Article  CAS  PubMed  Google Scholar 

  27. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  CAS  PubMed  Google Scholar 

  28. Sui, G., Soohoo, C., Affar, E. B., et al. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520.

    Article  CAS  PubMed  Google Scholar 

  29. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958.

    Article  CAS  PubMed  Google Scholar 

  30. Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.

    Article  CAS  PubMed  Google Scholar 

  31. Scherer, L. J. and Rossi, J. J. (2003) Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol. 21, 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  32. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932.

    Article  CAS  PubMed  Google Scholar 

  34. Baer, M., Nilsen, T. W., Costigan, C., and Altman, S. (1990) Structure and transcription of a human gene for HI RNA, the RNA component of human RNase P. Nucleic Acids Res. 18, 97–103.

    Article  CAS  PubMed  Google Scholar 

  35. Paule, M. R. and White, R. J. (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  36. Myslinski, E., Ame, J. C., Krol, A., and Carbon, P. (2001) An unusually compact external promoter for RNA polymerase III transcription of the human HI RNA gene. Nucleic Acids Res. 29, 2502–2509.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, M.-T., Wu, R.-H., Hung, C.-F., Cheng, T.-L., Tsai, W.-H., and Chang, W.-T. (2005) Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem. Biophys. Res. Commun. 330, 53–59.

    Article  CAS  PubMed  Google Scholar 

  39. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  CAS  PubMed  Google Scholar 

  40. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  CAS  PubMed  Google Scholar 

  41. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.

    Article  CAS  PubMed  Google Scholar 

  42. Ui-Tei, K., Naito, Y., Takahashi, F., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.

    Article  CAS  PubMed  Google Scholar 

  43. Mittal, V. (2004) Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet. 5, 355–365.

    Article  CAS  PubMed  Google Scholar 

  44. Hung, C.-F., Cheng, T.-L., Wu, R.-H., Teng, C.-F., and Chang, W.-T. (2006) A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells. Biochem. Biophys. Res. Commun. 339, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Cheng, TL., Chang, WT. (2007). Construction of Simple and Efficient DNA Vector-Based Short Hairpin RNA Expression Systems for Specific Gene Silencing in Mammalian Cells. In: Ochs, M.F. (eds) Gene Function Analysis. Methods in Molecular Biology™, vol 408. Humana Press. https://doi.org/10.1007/978-1-59745-547-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-547-3_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-734-1

  • Online ISBN: 978-1-59745-547-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics