Skip to main content

Single-Molecule Methods for Monitoring Changes in Bilayer Elastic Properties

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Membrane-spanning proteins perturb the organization and dynamics of the adjacent bilayer lipids. For example, when the hydrophobic length (l) of a bilayer-spanning protein differs from the average thickness (d 0) of the host bilayer, the bilayer thickness will vary locally in the vicinity of the protein in order to “match” the length of the protein’s hydrophobic exterior to the thickness of the bilayer hydrophobic core. Such bilayer deformations incur an energetic cost, the bilayer deformation energy (ΔG 0def ), which will vary as a function of the protein shape, the protein-bilayer hydrophobic mismatch (d 0l), the lipid bilayer elastic properties, and the lipid intrinsic curvature (c 0 ). Thus, if the membrane protein conformational changes underlying protein function involve the protein/bilayer interface, the ensuing changes in ΔG 0def (ΔΔG 0def ) will contribute to the overall free-energy change of the conformational changes (ΔG 0tot )—meaning that the host lipid bilayer will modulate protein function. For a given protein, ΔΔG 0def varies as a function of the bilayer geometric properties (thickness and intrinsic curvature) and the elastic (bending and compression) moduli, which vary as a function of changes in lipid composition or with the adsorption of amphiphiles at the bilayer/solution interface.

To understand how changes in bilayer properties modulate the function of bilayer-spanning proteins, single-molecule methods have been developed to probe changes in bilayer elastic properties using gramicidins as molecular force transducers. Different approaches to measuring the deformation energy are described: (1) measurements of changes in channel lifetimes and appearance rates as the lipid bilayer thickness or channel length are varied, (2) measurements of the equilibrium distribution among channels of different lengths, formed by homo- and heterodimers between gramicidin subunits of different lengths, and (3) measurements of the ratio of the appearance rates of heterodimer channels relative to parent homodimer channels formed by gramicidin subunits of different lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singer, S. J. and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.

    PubMed  CAS  Google Scholar 

  2. Haydon, D. A. and Hladky, S. B. (1972) Ion transport across thin lipid membranes. Critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5, 187–282.

    PubMed  CAS  Google Scholar 

  3. Andersen, O. S. (1978) Permeability properties of unmodified lipid bilayer membranes, in: Membrane Transport in Biology, (Giebisch, G., Tosteson, D. C., and Using, H. H. eds.), Springer, Berlin, pp. 369–446.

    Google Scholar 

  4. Finkelstein, A. (1987) Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes. Theory and Reality. John Wiley, New York.

    Google Scholar 

  5. Finkelstein, A. (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68, 127–135.

    PubMed  CAS  Google Scholar 

  6. Sandermann, H., Jr. (1978) Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515, 209–237.

    PubMed  CAS  Google Scholar 

  7. Sackmann, E. (1984) Physical basis of trigger processes and membrane structures, in Biological Membranes, (Chapman, D. ed.), Academic Press Inc. Ltd., London, pp. 105–143.

    Google Scholar 

  8. Devaux, P. F. and Seigneuret, M. (1985) Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim. Biophys. Acta 822, 63–125.

    PubMed  CAS  Google Scholar 

  9. Bienvenüe, A. and Marie, J. S (1994) Modulation of protein function by lipids. Curr. Top. Membr. 40, 319–354.

    Google Scholar 

  10. Dowhan, W. (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199–232.

    PubMed  CAS  Google Scholar 

  11. Hilgemann, D. W., Feng, S., and Nasuhoglu, C. (2001). The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE 2001, RE19.

    PubMed  CAS  Google Scholar 

  12. Lee, A. G. (2004) How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87.

    PubMed  CAS  Google Scholar 

  13. Myher, J. J., Kuksis, A., and Pind, S. (1989) Molecular species of glycerophospholipids and sphingomyelins of human erythrocytes: improved method of analysis. Lipids 24, 396–407.

    PubMed  CAS  Google Scholar 

  14. Fridriksson, E. K., Shipkova, P. A., Sheets, E. D., Holowka, D., Baird, B., and McLafferty, F. W. (1999) Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38, 8056–8063.

    PubMed  CAS  Google Scholar 

  15. Pike, L. J., Han, X., Chung, K., and Gross, R. W. (2002) Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their compostion is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41, 2075–2088.

    PubMed  CAS  Google Scholar 

  16. Lemmon, M. A. and Ferguson, K. M. (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350(Pt 1), 1–18.

    PubMed  CAS  Google Scholar 

  17. McLaughlin, S., Wang, J., Gambhir, A., and Murray, D. (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175.

    PubMed  CAS  Google Scholar 

  18. McIntosh, T. J. and Simon, S. A. (2006) Roles of bilayer material properties in function and distribution of membrane proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 177–198.

    PubMed  CAS  Google Scholar 

  19. Unwin, P. N. T. and Ennis, P. D. (1984) Two configurations of a channel-forming membrane protein. Nature 307, 609–613.

    PubMed  CAS  Google Scholar 

  20. Unwin, N., Toyoshima, C., and Kubalek, E. (1988) Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell Biol. 107, 1123–1138.

    PubMed  CAS  Google Scholar 

  21. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., et al. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.

    PubMed  CAS  Google Scholar 

  22. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522.

    PubMed  CAS  Google Scholar 

  23. Jiang, Y., Lee, A., Chen, J., et al. (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41.

    PubMed  CAS  Google Scholar 

  24. Jiang, Y., Ruta, V., Chen, J., Lee, A., and MacKinnon, R. (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48.

    PubMed  CAS  Google Scholar 

  25. Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6Å resolution. Nature 405, 647–655.

    PubMed  CAS  Google Scholar 

  26. Toyoshima, C., Nomura, H., and Tsuda, T. (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368.

    PubMed  CAS  Google Scholar 

  27. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226.

    PubMed  CAS  Google Scholar 

  28. Sukharev, S., Betanzos, M., Chiang, C., and Guy, H. R. (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724.

    PubMed  CAS  Google Scholar 

  29. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A., and Martinac, B. (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948.

    PubMed  CAS  Google Scholar 

  30. Salamon, Z., Wang, Y., Brown, M. F., Macleod, H. A., and Tollin, G. (1994) Conformational changes in rhodopsin probed by surface plasmon resonance spectroscopy. Biochemistry 33, 13,706–13,711.

    PubMed  CAS  Google Scholar 

  31. Sakmar, T. P. (1998) Rhodopsin: a prototypical G protein-coupled receptor. Prog. Nucl. Acid Res. Mol. Biol. 59, 1–34.

    CAS  Google Scholar 

  32. Brown, M. F. (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73, 159–180.

    PubMed  CAS  Google Scholar 

  33. Isele, J., Sakmar, T. P., and Siebert, F. (2000) Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study. Biophys. J. 79, 3063–3071.

    PubMed  CAS  Google Scholar 

  34. Damjanovich, S., Edidin, M., Szöllõsi, J., and Trón, L. (1994) Mobility and Proximity in Biological Membranes. CRC Press, Boca Raton, FL.

    Google Scholar 

  35. Barenholz, Y. (2002) Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog. Lipid Res. 41, 1–5.

    PubMed  CAS  Google Scholar 

  36. Lee, A. G. (1991) Lipids and their effects on membrane proteins: Evidence against a role for fluidity. Prog. Lipid Res. 30, 323–348.

    PubMed  CAS  Google Scholar 

  37. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Structure at 2 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669.

    PubMed  CAS  Google Scholar 

  38. McAuley, K., Fyfe, P. K., Ridge, J. P., Isaacs, N. W., Cogdell, R. J., and Jones, M. R. (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc. Natl. Acad. Sci. USA 96, 14,706–14,711.

    PubMed  CAS  Google Scholar 

  39. Valiyaveetil, F. I., Zhou, Y., and MacKinnon, R. (2002) Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 41, 10,771–10,777.

    PubMed  CAS  Google Scholar 

  40. Lee, A. G. (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40.

    PubMed  CAS  Google Scholar 

  41. Tefft, R. E., Jr., Carruthers, A., and Melchior, D. L. (1986) Reconstituted human erythrocyte sugar transporter activity is determined by bilayer lipid head groups. Biochemistry 25, 3709–3718.

    PubMed  CAS  Google Scholar 

  42. Starling, A. P., East, J. M., and Lee, A. G. (1995) Evidence that the effects of phospholipids on the activity of the Ca2+-ATPase do not involve aggregation. Biochem. J. 308, 343–346.

    PubMed  CAS  Google Scholar 

  43. Cornelius, F. (2001) Modulation of Na, K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. steady-state kinetics. Biochemistry 40, 8842–8851.

    PubMed  CAS  Google Scholar 

  44. Perozo, E., Kloda, A., Cortes, D. M., and Martinac, B. (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9, 696–703.

    PubMed  CAS  Google Scholar 

  45. Navarro, J., Toivio-Kinnucan, M., and Racker, E. (1984) Effect of lipid composition on the calcium/adenosine 5′-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry 23, 130–135.

    PubMed  CAS  Google Scholar 

  46. Hui, S.-W. and Sen, A. (1989) Effects of lipid packing on polymorphic phase behavior and membrane properties. Proc. Natl. Acad. Sci. USA 86, 5825–5829.

    PubMed  CAS  Google Scholar 

  47. McCallum, C. D. and Epand, R. M. (1995) Insulin receptor autophosphorylation and signalling is altered by modulation of membrane physical properties. Biochemistry 34, 1815–1824.

    PubMed  CAS  Google Scholar 

  48. Chang, H. M. and Reitstetter, R. G. R. (1995) Lipid-ion channel interactions: Increasing phospholipid headgroup size but not ordering acyl chains alters reconstituted channel behavior. J. Membr. Biol. 145, 13–19.

    PubMed  CAS  Google Scholar 

  49. Hazel, J. R. (1995) Thermal adaption in biological membranes: is homeoviscous adaption the explanation? Annu. Rev. Physiol. 57, 19–42.

    PubMed  CAS  Google Scholar 

  50. Lindblom, G., Oradd, G., Rilfors, L., and Morein, S. (2002) Regulation of lipid composition in Acholeplasma laidlawii and Escherichia coli membranes: NMR studies of lipid lateral diffusion at different growth temperatures. Biochemistry 41, 11,512–11,515.

    PubMed  CAS  Google Scholar 

  51. Gruner, S. M. (1991) Lipid membrane curvature elasticity and protein function, in Biologically Inspired Physics, (Peliti, L., ed.), Plenum Press, New York, pp. 127–135.

    Google Scholar 

  52. Andersen, O. S., Sawyer, D. B., and Koeppe, R. E., II. (1992) Modulation of channel function by the host bilayer, in Biomembrane Structure and Function, (Easwaran, K. R. K. and Gaber, B., eds.), Adenine Press, Schenectady, NY, pp. 227–244.

    Google Scholar 

  53. Huang, H. W. (1986) Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070.

    PubMed  CAS  Google Scholar 

  54. Mouritsen, O. G. and Bloom, M. (1984) Mattress model of lipid-protein interactions in membranes. Biophys. J. 46, 141–153.

    PubMed  CAS  Google Scholar 

  55. Gruner, S. M. (1985) Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82, 3665–3669.

    PubMed  CAS  Google Scholar 

  56. Helfrich, P. and Jakobsson, E. (1990) Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Biophys. J. 57, 1075–1084.

    PubMed  CAS  Google Scholar 

  57. Ring, A. (1996) Gramicidin channel-induced lipid membrane deformation energy: influence of chain length and boundary conditions. Biochim. Biophys. Acta 1278, 147–159.

    PubMed  Google Scholar 

  58. Dan, N. and Safran, S. A. (1998) Effect of lipid characteristics on the structure of transmembrane proteins. Biophys. J. 75, 1410–1414.

    PubMed  CAS  Google Scholar 

  59. Nielsen, C., Goulian, M., and Andersen, O. S. (1998) Energetics of inclusion-induced bilayer deformations. Biophys. J. 74, 1966–1983.

    PubMed  CAS  Google Scholar 

  60. Nielsen, C. and Andersen, O. S. (2000) Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys. J. 79, 2583–2604.

    PubMed  CAS  Google Scholar 

  61. Helfrich, W. (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28C, 693–703.

    Google Scholar 

  62. Helfrich, W. (1981) Amphiphilic mesophases made of defects, in Physique des défauts (Physics of defects), (Balian, R., Kléman, M., and Poirier, J.-P., eds.), North-Holland Publishing Company, New York, pp. 716–755.

    Google Scholar 

  63. Partenskii, M. B. and Jordan, P. C. (2002) Membrane deformation and the elastic energy of insertion: Perturbation of membrane elastic constants due to peptide insertion. J. Chem. Phys. 117, 10,768–10,776.

    CAS  Google Scholar 

  64. Lundbæk, J. A. and Andersen, O. S. ((1999) Spring constants for channel-induced lipid bilayer deformations—estimates using gramicidin channels. Biophys. J. 76, 889–895.

    PubMed  Google Scholar 

  65. Cantor, R. (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. B 101, 1723–1725.

    CAS  Google Scholar 

  66. Bezrukov, S. M. (2000) Functional consequences of lipid packing stress. Curr. Opin. Coll. Interface Sci. 5, 237–243.

    CAS  Google Scholar 

  67. Mitchell, D. C., Straume, M., Miller, J. L., and Litman, B. J. (1990) Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29, 9143–9149.

    PubMed  CAS  Google Scholar 

  68. Booth, P. J., Templer, R. H., Meijberg, W., Allen, S. J., Curran, A. R., and Lorch, M. (2001) In Vitro studies of membrane protein folding. Crit. Rev. Biochem. Mol. Biol. 36, 501–603.

    PubMed  CAS  Google Scholar 

  69. Keller, S. L., Bezrukov, S. M., Gruner, S. M., Tate, M. W., Vodyanoy, I., and Parsegian, V. A. (1993) Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys. J. 65, 23–27.

    PubMed  CAS  Google Scholar 

  70. Epand, R. M. (1998) Lipid polymorphism and protein-lipid interactions. Biochim. Biophys. Acta 1376, 353–368.

    PubMed  CAS  Google Scholar 

  71. Seddon, J. M. (1990) Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta 1031, 1–69.

    PubMed  CAS  Google Scholar 

  72. Tate, M. W., Eikenberry, E. F., Turner, D. C., Shyamsunder, E., and Gruner, S. M. (1991) Nonbilayer phases of membrane lipids. Chem. Phys. Lipids 57, 147–164.

    PubMed  CAS  Google Scholar 

  73. Evans, E., Rawicz, W., and Hofmann, A. F. (1995) Lipid bilayer expansion and mechanical disruption in solutions of water-soluble bile acid, in Bile Acids in Gastroenterology Basic and Clinical Advances, (Hofmann, A. F., Paumgartner, G., and Stiehl, A. eds.), Kluwer Academic Publishers, Dordrecht, pp. 59–68.

    Google Scholar 

  74. McIntosh, T. J., Advani, S., Burton, R. E., Zhelev, D. V., Needham, D., and Simon, S. A. (1995) Experimental tests for protrusion and undulation pressures in phospholipid bilayers. Biochemistry 34, 8520–8532.

    PubMed  CAS  Google Scholar 

  75. Santore, M. M., Discher, D. E., Won, Y.-Y., Bates, F. S., and Hammer, D. A. (2002) Effect of surfactant on unilamellar polymeric vesicles: Altered membrane properties and stability in the limit of weak surfactant partitioning. Langmuir 18, 7299–7308.

    CAS  Google Scholar 

  76. Ly, H. V. and Longo, M. L. (2004) The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys. J. 87, 1013–1033.

    PubMed  CAS  Google Scholar 

  77. Zhou, Y. and Raphael, R. M. (2005) Effect of salicylate on the elasticity, bending stiffness, and strength of SOPC membranes. Biophys. J. 89, 1789–1801.

    PubMed  CAS  Google Scholar 

  78. Evans, E. and Needham, D. (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem. 91, 4219–4228.

    CAS  Google Scholar 

  79. Needham, D. (1995) Cohesion and permeability of lipid bilayer vesicles, in Permeability and Stability of Lipid Bilayers, (Disalvo, E. A. and Simon, S. A., eds.), CRC Press, Boca Raton, FL, pp. 49–76.

    Google Scholar 

  80. Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D., and Evans, E. (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    PubMed  CAS  Google Scholar 

  81. Allende, D., Vidal, A., Simon, S. A., and McIntosh, T. J. (2003) Bilayer interfacial properties modulate the binding of amphipathic peptides. Chem. Phys. Lipids 122, 65–76.

    PubMed  CAS  Google Scholar 

  82. Parsegian, V. A., Rand, R. P., and Rau, D. C. (1995) Macromolecules and water: probing with osmotic stress. Methods Enzymol. 259, 43–94.

    PubMed  CAS  Google Scholar 

  83. Rostovtseva, T. K., Liu, T.-T., Colombini, M., Parsegian, V. A., and Bezrukov, S. M. (2000) Positive cooperativity without domains or subunits in a monomeric membrane channel. PNAS 97, 7819–7822.

    PubMed  CAS  Google Scholar 

  84. Sawyer, D. B., Koeppe, R. E., II., and Andersen, O. S. (1989) Induction of conductance heterogeneity in gramicidin channels. Biochemistry 28, 6571–6583.

    PubMed  CAS  Google Scholar 

  85. Lundbæk, J. A. and Andersen, O. S. (1994) Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104, 645–673.

    PubMed  Google Scholar 

  86. Lundbæk, J. A., Birn, P., Girshman, J., Hansen, A. J., and Andersen, O. S. (1996) Membrane stiffness and channel function. Biochemistry 35, 3825–3830.

    PubMed  Google Scholar 

  87. Lundbæk, J. A., Maer, A. M., and Andersen, O. S. (1997) Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry 36, 5695–5701.

    PubMed  Google Scholar 

  88. Bezrukov, S. M., Rand, R. P., Vodyanoy, I., and Parsegian, V. A. (1998) Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge. Faraday Discuss. 173–183, discussion 225–246.

    Google Scholar 

  89. Andersen, O. S., Nielsen, C., Maer, A. M., Lundbæk, J. A., Goulian, M., and Koeppe, R. E., II. (1999) Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. Methods Enzymol. 294, 208–224.

    PubMed  CAS  Google Scholar 

  90. Sawyer, D. B. and Andersen, O. S. (1989) Platelet-activating factor is a general membrane perturbant. Biochim. Biophys. Acta 987, 129–132.

    PubMed  CAS  Google Scholar 

  91. Hwang, T. C., Koeppe, R. E., II., and Andersen, O. S. (2003) Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42, 13,646–13,658.

    PubMed  CAS  Google Scholar 

  92. Lundbæk, J. A., Birn, P. H. A. J., Søaard, R., et al. (2004) Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling: effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol. 123, 599–621.

    PubMed  Google Scholar 

  93. Lundbæk, J. A., Birn, P., Tape, S. E., et al. (2005) Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. Mol. Pharmacol. 68, 680–689.

    PubMed  Google Scholar 

  94. O’Connell, A. M., Koeppe, R. E., II., and Andersen, O. S. (1990) Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science 250, 1256–1259.

    PubMed  Google Scholar 

  95. Andersen, O. S. and Koeppe, R. E., II. (1992) Molecular determinants of channel function. Physiol. Rev. 72, S89–S158.

    PubMed  CAS  Google Scholar 

  96. Andersen, O. S., Apell, H.-J., Bamberg, E., et al. (1999) Gramicidin channel controversy—the structure in a lipid environment. Nat. Struct. Biol. 6, 609.

    PubMed  CAS  Google Scholar 

  97. Sarges, R., Witkop, B., and Gramicidin, A. V. (1965) The structure of valine-and isoleucine-gramicidin A. J. Am. Chem. Soc. 87, 2011–2019.

    PubMed  CAS  Google Scholar 

  98. Arseniev, A. S., Lomize, A. L., Barsukov, I. L., and Bystrov, V. F. (1986) Gramicidin A transmembrane ion-channel. Three-dimensional structure reconstruction based on NMR spectroscopy and energy refinement. Biol. Membr. 3, 1077–1104.

    CAS  Google Scholar 

  99. Ketchem, R. R., Roux, B., and Cross, T. A. (1997) High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5, 1655–1669.

    PubMed  CAS  Google Scholar 

  100. Townsley, L. E., Tucker, W. A., Sham, S., and Hinton, J. F. (2001) Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40, 11,676–11,686.

    PubMed  CAS  Google Scholar 

  101. Andersen, O. S., Koeppe, R. E., II., and Roux, B. (2005) Gramicidin channels. IEEE Trans. Nanobiosci. 4, 10–20.

    Google Scholar 

  102. Elliott, J. R., Needham, D., Dilger, J. P., and Haydon, D. A. (1983) The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim. Biophys. Acta 735, 95–103.

    PubMed  CAS  Google Scholar 

  103. Benz, R., Frölich, O., Läuger, P., and Montal, M. (1975) Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta 394, 323–334.

    PubMed  CAS  Google Scholar 

  104. Lewis, B. A. and Engelman, D. M. (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217.

    PubMed  CAS  Google Scholar 

  105. Veatch, W. R., Mathies, R., Eisenberg, M., and Stryer, L. (1975) Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J. Mol. Biol. 99, 75–92.

    PubMed  CAS  Google Scholar 

  106. He, K., Ludtke, S. J., Wu, Y., et al. (1994) Closed state of gramicidin channel detected by X-ray in-plane scattering. Biophys. Chem. 49, 83–89.

    PubMed  CAS  Google Scholar 

  107. Bamberg, E. and Läuger, P. (1973) Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membr. Biol. 11, 177–194.

    PubMed  CAS  Google Scholar 

  108. Lundbæk, J. A. (2006) Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein. J. Physics: Cond. Matt. 18, S1305–S1344.

    Google Scholar 

  109. Veatch, W. R., Fossel, E. T., and Blout, E. R. (1974) The conformation of gramicidin A. Biochemistry 13, 5249–5256.

    PubMed  CAS  Google Scholar 

  110. Bystrov, V. F. and Arseniev, A. S. (1988) Diversity of the gramicidin A spatial structure: two-dimensional proton NMR study in solution. Tetrahedron 44, 925–940.

    CAS  Google Scholar 

  111. Abdul-Manan, N. and Hinton, J. F. (1994) Conformational states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy. Biochemistry 33, 6773–6783.

    PubMed  CAS  Google Scholar 

  112. Salom, D., Perez-Paya, E., Pascal, J., and Abad, C. (1998) Environment-and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes. Biochemistry 37, 14,279–14,291.

    PubMed  CAS  Google Scholar 

  113. Koeppe, R. E., II., Providence, L. L., Greathouse, D. V., et al. (1992) On the helix sense of gramicidin A single channels. Proteins 12, 49–62.

    PubMed  CAS  Google Scholar 

  114. Durkin, J. T., Koeppe, R. E., II., and Andersen, O. S. (1990) Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. J. Mol. Biol. 211, 221–234.

    CAS  Google Scholar 

  115. Durkin, J. T., Providence, L. L., Koeppe, R. E., II., and Andersen, O. S. (1993) Energetics of heterodimer formation among gramicidin analogues with an NH2-terminal addition or deletion. Consequences of a missing residue at the join in channel. J. Mol. Biol. 231, 1102–1121.

    PubMed  CAS  Google Scholar 

  116. Saberwal, G., Greathouse, D., Koeppe, R. E., II., and Andersen, O. S. (1994) Contacts that are good for you: side chain contacts in the gramicidin channel. Biophys. J. 66, A219.

    Google Scholar 

  117. Greathouse, D. V., Koeppe, R. E., II., Providence, L. L., Shobana, S., and Andersen, O. S. (1999) Design and characterization of gramicidin channels. Methods Enzymol. 294, 525–550.

    PubMed  CAS  Google Scholar 

  118. Sawyer, D. B., Koeppe, R. E., II., and Andersen, O. S. (1990) Gramicidin single-channel properties show no solvent-history dependence. Biophys. J. 57, 515–523.

    PubMed  CAS  Google Scholar 

  119. Andersen, O. S. (1983) Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys. J. 41, 119–133.

    PubMed  CAS  Google Scholar 

  120. Mouritsen, O. G. and Andersen, O. S. (1998) Do we need a new biomembrane model. In: In Search of a New Biomembrane Model. Mouritsen, O. G. and Anderson, O. S., editors. Biol. Skr. Dan. Vid. Selsk. 49, 7–12. Munksgaard, Copenhagen.

    Google Scholar 

  121. Borisenko, V., Lougheed, T., Hesse, J., et al. (2003) Simultaneous Optical and Electrical Recording of Single Gramicidin Channels. Biophys. J. 84, 612–622.

    PubMed  CAS  Google Scholar 

  122. Harms, G. S., Orr, G., Montal, M., Thrall, B. D., Colson, S. D., and Lu, H. P. (2003) Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys. J. 85, 1826–1838.

    PubMed  CAS  Google Scholar 

  123. Schurr, J. M. (1970) The role of diffusion in bimolecular solution kinetics. Biophys. J. 10, 701–716.

    Google Scholar 

  124. Gekko, K. and Noguchi, H. (1979) Compressibility of globular proteins in water at 25°C. J. Phys. Chem. 83, 2706–2714.

    CAS  Google Scholar 

  125. Liu, N. and Kay, R. L. (1977) Redetermination of the pressure dependence of the lipid bilayer phase transition. Biochemistry 16, 3484–3486.

    PubMed  CAS  Google Scholar 

  126. Miloshevsky, G. V. and Jordan, P. C. (2004) Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation. Biophys. J. 86, 92–104.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Andersen, O.S., Bruno, M.J., Sun, H., Koeppe, R.E. (2007). Single-Molecule Methods for Monitoring Changes in Bilayer Elastic Properties. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_37

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics