Skip to main content

Acrylodan-Labeled Intestinal Fatty Acid-Binding Protein to Measure Concentrations of Unbound Fatty Acids

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

The concentration of long-chain (14–18 carbons) fatty acids (FA) free in solution (unbound) is difficult to measure directly because of the low aqueous solubility of these common dietary FA. One indirect and convenient way to measure the concentration of unbound FA is a method using the fluorescent-(acrylodan) labeled intestinal FA-binding protein (ADIFAB). Under appropriate conditions, ADIFAB fluorescence measures unbound FA, regardless of any third phase such as albumin, FA-binding proteins, or membranes. With knowledge of the total amount of FA in the system and the assumption that the amount of FA bound to ADIFAB is negligible, equilibrium constants or partition coefficients for FA in equilibrium with the third phase can be calculated. Herein, the use of ADIFAB is described to measure unbound FA concentration using oleic acid as a typical long-chain FA. Attempts were not made to calibrate the accuracy of ADIFAB for FA concentration, but to investigate its reliability and reproducibility under differing buffer conditions. It is shown that ADIFAB fluorescence is sensitive to biologically prevalent ions and that calibration curves must be constructed for conditions that do not closely match those previously published. The results with in vitro systems suggest that there will be caveats with the application of ADIFAB to measure FA concentrations in vivo, where the precise environment of the probe is not known or cannot be tightly controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinkmann, J. F., Abumrad, N. A., Ibrahimi, A., van der Vusse, G. J., and Glatz, J. F. C. (2002) New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem. J. 367, 561–570.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, X., Fitzsimmons, R. L., Cleland, L. G., et al. (2003) CD36/fatty acid translocase in rats: distribution, isolation from hepatocytes, and comparison with the scavener receptor SR-B1. Lab. Invest. 83, 317–332.

    Article  PubMed  CAS  Google Scholar 

  3. Civelek, V. N., Hamilton, J. A., Tornheim, K., Kelly, K. L., and Corkey, B. E. (1996) Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc. Natl. Acad. Sci. USA 93, 10,139–10,144.

    Article  PubMed  CAS  Google Scholar 

  4. Hamilton, J. A. (1998) Fatty acid transport: difficult or easy? J. Lipid Res. 39}, 467–481.

    PubMed  CAS  Google Scholar 

  5. Hamilton, J. A. and Kamp, F. (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48, 2255–2269.

    Article  PubMed  CAS  Google Scholar 

  6. Hamilton, J. A., Johnson, R. A., Corkey, B., and Kamp, F. (2001) Fatty acid transport: the diffusion mechanism in model and biological membranes. J. Mol. Neurosci. 16, 99–107.

    Article  PubMed  CAS  Google Scholar 

  7. Hamilton, J. A., Guo, W., and Kamp, F. (2002) Mechanism of uptake of long-chain fatty acids: do we need cellular proteins? Mol. Cell Biochem. 239, 17–23.

    Article  PubMed  CAS  Google Scholar 

  8. Kamp, F. and Hamilton, J. A. (1992) pH gradients across phospholipid membranes caused by fast flip-flop of unionized fatty acids. Proc. Natl. Acad. Sci. USA 89, 11,367–11,370.

    Article  PubMed  CAS  Google Scholar 

  9. Kamp, F., Zakim, D., Zhang, F., Noy, N., and Hamilton, J. A. (1995) Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34, 11,928–11,937.

    Article  PubMed  CAS  Google Scholar 

  10. Kamp, F. and Hamilton, J. A. (1993) Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32, 11,074–11,085.

    Article  PubMed  CAS  Google Scholar 

  11. Kamp, F., Guo, W., Souto, R., Pilch, P., Corkey, B. E., and Hamilton, J. A. (2003) J. Biol. Chem. 278, 7988–7995.

    Article  PubMed  CAS  Google Scholar 

  12. Hamilton, J. A. and Guo, W. (2001) Fatty acid uptake and metabolism in HepG2 cells. Abstract 365A, 45th annual Biophysical Society meeting, Baltimore, MD.

    Google Scholar 

  13. Guo, W., Huang, N., Cai, J., Xie, W., and Hamilton, J. A. (2006) Fatty acid transport and metabolism in HepG2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 290, 528–534.

    Article  Google Scholar 

  14. Zhang, F., Lücke, C., Baier, L. J., Sacchettini, J. C., and Hamilton, J. A. (1997) Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J. Biomol. NMR 9, 213–228.

    Article  PubMed  CAS  Google Scholar 

  15. Hodsdon, M. E., Ponder, J. W., and Cistola, D. P. (1996) The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J. Mol. Biol. 264, 585–602.

    Article  PubMed  CAS  Google Scholar 

  16. Lücke, C., Gutierrez-Gonzalez, L. H., and Hamilton, J. A. (2003) Intracellular lipid binding proteins: evolution, structure, and ligand binding. Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany, 95–118.

    Google Scholar 

  17. Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J. (1988) The structure of crystalline Eschericia coliderived rat intestinal fatty acid-binding protein at 2.5-A resolution. J. Biol. Chem. 263, 5815–5819.

    PubMed  CAS  Google Scholar 

  18. Prendergast, F., Meyer, M., Carlson, G., Iida, S., and Potter, J. (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-sensitive, polarity-sensitive fluorescent probe. J. Biol. Chem. 258, 7541–7544.

    PubMed  CAS  Google Scholar 

  19. Scapin, G., Gordon, J. I., and Sacchettini, J. C. (1992) Refinement of the structure of recombinant rat intestinal fatty acid-binding apoprotein at 1.2-A resolution. J. Biol. Chem. 267, 4253–4269.

    PubMed  CAS  Google Scholar 

  20. Hamilton, J. A. (2002) How fatty acids bind to proteins: the inside story from protein structures. Prostaglandins Leukot Essent. Fatty Acids 67, 65–72.

    Article  PubMed  CAS  Google Scholar 

  21. Richieri, G. V., Ogata, R. T., and Kleinfeld, A. M. (1992) A fluorescently labeled intestinal fatty acid binding protein: interactions with fatty acids and its use in monitoring free fatty acids. J. Biol. Chem. 267, 23,495–23,501.

    PubMed  CAS  Google Scholar 

  22. Richieri, G. V., Ogata, R. T., and Kleinfeld, A. M. (1999) The measurement of free fatty acid concentration with the fluorescent probe ADIFAB: a practical guide for the use of the ADIFAB probe. Mol. Cell Biochem. 192, 87–94.

    Article  PubMed  CAS  Google Scholar 

  23. Kampf, J. P. and Kleinfeld, A. M. (2004) Fatty acid transport in adipocytes monitored by imaging intracellular free fatty acid levels. J. Biol. Chem. 279, 35,775–35,780.

    Article  PubMed  CAS  Google Scholar 

  24. McArthur, M. J., Atshaves, B. P., Frolov, A., Foxworth, W. D., Kier, A. B., and Schroeder, F. (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. J. Lipid Res. 40, 1371–1383.

    PubMed  CAS  Google Scholar 

  25. FFA Sciences website, http://www.ffasciences.com. Last accessed April 2007.

  26. Richieri, G. V., Anel, A., and Kleinfeld, A. M. (1993) Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry 32, 7574–7580.

    Article  PubMed  CAS  Google Scholar 

  27. Richieri, G. V., Ogata, R. T., and Kleinfeld, A. M. (1996) Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine. J. Biol. Chem. 271, 31,068–31,074.

    Article  PubMed  CAS  Google Scholar 

  28. Richieri, G. V. and Kleinfeld, A. M. (1995) Continuous measurement of phospholipase A2 activity using the fluorescent probe ADIFAB. Anal. Biochem. 229, 256–263.

    Article  PubMed  CAS  Google Scholar 

  29. Richieri, G. V. and Kleinfeld, A. M. (1995) Unbound free fatty acid levels in human serum. J. Lipid Res. 36, 229–240.

    PubMed  CAS  Google Scholar 

  30. Bartlett, G. R. (1959) Phosphorous assay in column chromatography. J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Simard, J.R., Kamp, F., Hamilton, J.A. (2007). Acrylodan-Labeled Intestinal Fatty Acid-Binding Protein to Measure Concentrations of Unbound Fatty Acids. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics