Skip to main content

Laser Tweezer Deformation of Giant Unilamellar Vesicles

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Two methods are presented for deforming giant unilamellar vesicles with holographic optical tweezers. The first allows ultrahigh spatial- and temporal-resolution optical tracking of membrane deformations, by using embedded silica microspheres in a giant unilamellar vesicle as tracers. The vesicles are stretched by moving several beads with multiple optical tweezers and then are released from an elongated shape. Time constants of relaxation can be extracted by tracking the beads with 0.5-ms time resolution and 10 nm or better spatial resolution. The second method allows for direct deformation of the membrane into complex shapes using two solutions with different indices of refraction and holographic optical tweezer. Vesicle shapes are extracted directly with an active contour algorithm. Fourier analysis of the relaxation of the vesicle shape back to an equilibrium shape demonstrates a possible application of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pier Luigi Luisi and Peter Walde (eds.) (2000) Giant Vesicles. Wiley and Sons, New York.

    Google Scholar 

  2. Evans, E. and Needham, D. (1987) Physical properties of surfactant bilayer-membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem. 91, 4219–4228.

    Article  CAS  Google Scholar 

  3. Pécréaux, J., Döbereiner, H.-G., Prost, J., Joanny, J.-F., and Bassereau, P. (2004) Refined contour analysis of giant unilamellar vesicles. Eur. Phys. J. E13, 277–290.

    Article  PubMed  Google Scholar 

  4. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. (1986) Observation of a single beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290.

    Article  PubMed  CAS  Google Scholar 

  5. Ashkin, A. (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Elec. 6, 841–856.

    Article  CAS  Google Scholar 

  6. Ashkin, A. (1998) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Methods Cell Biol. 55, 1–27.

    Article  PubMed  CAS  Google Scholar 

  7. Grier, D. G. (2003) A Revolution in optical manipulation. Nature 424, 810–816.

    Article  PubMed  CAS  Google Scholar 

  8. Ashkin, A., Dziedzic, J. M., and Yamane, T. (1987) Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams. Nature 330, 769–771.

    Article  PubMed  CAS  Google Scholar 

  9. Sasaki, K., Koshio, M., Misawa, H., Kitamura, N., and Masuhara, H. (1991) Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett. 16, 1463–1465.

    Article  PubMed  CAS  Google Scholar 

  10. Sasaki, K., Fujiwara, H., and Masuhara, H. (1997) Optical manipulation of a lasing microparticle and its application to near-field microspectroscopy. J. Vacuum Sci. Technol. B 15, 2786–2790.

    Article  CAS  Google Scholar 

  11. Mio, C., Gong, T., Terray, A., and Marr, D. W. M. (2001) Morphological control of mesoscale colloidal models. Fluid Phase Equilibria 185, 157–163.

    Article  CAS  Google Scholar 

  12. Dufresne, E. R. and Grier, D. G. (1998) Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instr. 69, 1974–1977.

    Article  CAS  Google Scholar 

  13. Dufresne, E. R., Spalding, G. C., Dearing, M. T., Sheets, S. A., and Grier, D. G. (2001) Computergenerated holographic optical tweezer arrays. Rev. Sci. Instr. 72, 1810–1816.

    Article  CAS  Google Scholar 

  14. John, C. Crocker and David, G. Grier. (1996) Methods of Digital Video Microscopy for Colloidal Studies, J. Colloid Interface Sci. 179, 298–310.

    Article  Google Scholar 

  15. Eric, W. Weisstein. (1999) Discrete Fourier Transform. MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/DiscreteFourierTransform.html

  16. Folland, G. B. (1992) Fourier Analysis and Its Applications. Brooks/Cole Publishing Co., Pacific Grove, CA.

    Google Scholar 

  17. Ryan Smith and Gabe Spalding (2005) User-Friendly, Freeware Image Segmentation and Particle Tracking. http://titan.iwu.edu/~gspaldin/rytrack.html

  18. John, C. Crocker and Eric, R. Weeks. (2001) Particle tracking using IDL. http://www.physics.emory.edu/~weeks/idl/index.html

  19. Manouk Abkarian, Colette Lartigue, and Annie Viallat. (2002) Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force Phys. Rev. Let. 88, 8103–8107.

    Article  Google Scholar 

  20. Mathews Jacob (2003) Parametric Shape Processing in Biomedical Imaging, Swiss Federal Institute of Technology Lausanne. EPFL Thesis no. 2857.

    Google Scholar 

  21. Jacob, M., Blu, T., and Unser, M. (2004) Efficient energies and algorithms for parametric snakes. IEEE Trans. Image Processing, 13, 1231–1244.

    Article  Google Scholar 

  22. Mathews Jacob (2003) SplineSnake, http://ip.beckman.uiuc.edu/Software/SplineSnake/

  23. Jeremy Pencer, Gisèle F. White, and F. Ross Hallett (2001) Osmotically Induced Shape Changes of Large Unilamellar Vesicles Measured by Dynamic Light Scattering. Biophys. J. 81, 2716–2728.

    Article  PubMed  CAS  Google Scholar 

  24. Udo Seifert, Karin Berndl, and Reinhard Lipowsky (1991) Shape Transformations of Vesicles: Phase Diagram for Spontaneous-Curvature and Bilayer-Coupling Models. Phys. Rev. A 44, 1182–1202.

    Article  PubMed  CAS  Google Scholar 

  25. Mills, J. P., Qie, L., Dao, M., Lim, C. T., and Suresh, S. (2004) Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell with Optical Tweezers. Mech. Chem. Biosyst. 1, 169–180.

    PubMed  CAS  Google Scholar 

  26. Angelova, M. I., Soléau, S., Méléard, P., Faucon, J.-F., and Bothorel, P. (1992) Preparation of giant vesicles by external ac electric fields: kinetics and applications. Prog. Colloid Polym. Sci. 89, 127–131.

    Article  CAS  Google Scholar 

  27. Philippe Marmottant and Sascha Hilgenfeldt. (2003) Personal Communication.

    Google Scholar 

  28. Bagatolli, L. A. and Gratton, E. (1999) Two-Photon Fluorescence Microscopy Observation of Shape Changes at the Phase Transition in Phospholipid Giant Unilamellar Vesicles. Biophys. J. 77, 2090–2101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Poole, C., Losert, W. (2007). Laser Tweezer Deformation of Giant Unilamellar Vesicles. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics