Skip to main content

A Glance at the Structural and Functional Diversity of Membrane Lipids

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

In the postgenomic era, spatially and temporally regulated molecular interactions as signals are beginning to take center stage in the understanding of fundamental biological events. For years, reductionism derived from the “fluid mosaic” model of the cell membrane has portrayed membrane lipids as rather passive molecules that, whereas separating biologically relevant aqueous phases, provided an environment so that membrane proteins could fulfill the specificity and selectivity required for proper cell signaling. Whereas these roles for membrane lipids still stand, the structural diversity of lipids and their complex arrangement in supramolecular assemblies have expanded such limited, although fundamental roles. Growing developments in the field of membrane lipids help to understand biological phenomena at the nanoscale domain, and reveal this heterogeneous group of organic compounds as a long underestimated group of key regulatory molecules. In this introductory chapter, brief overviews of the structural diversity of membrane lipids, the impact of different lipids on membrane properties, the vertical organization of lipids into rafts and caveolae, and the functional role of lipids as mediators of inter- and intracellular signals are provided. Any comprehensive review on membrane lipids, whether emphasizing structural or functional aspects, will require several volumes. The purpose of this chapter is to provide both introduction and rationale for the selection of topics that lie ahead in this book. For this reason, the list of references primarily includes reviews on particular issues dealing with membrane lipids wherein the reader can find further references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson, D. L. and Cox, M. M. (eds.) (2004) Lehninger Principles of Biochemistry. Freeman, New York, NY.

    Google Scholar 

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (eds.) (2002) Molecular Biology of the Cell. Garland Science, New York, NY.

    Google Scholar 

  3. Smith, E. L., Hill, R. L., Lehman, I. R., Lefkowitz, R. J., Handler, P., and White, A. (eds.) (1983) Principles of Biochemistry-General Aspects. McGraw Hill Book Company, New York, NY.

    Google Scholar 

  4. Wolf, C. and Quinn, P. J. (2004) Membrane lipid homeostasis. Subcell Biochem. 37, 317–357.

    PubMed  CAS  Google Scholar 

  5. Dowhan, W. (1997) Molecular basis for membrane phospholipids diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199–232.

    Article  PubMed  CAS  Google Scholar 

  6. Sackmann, E. (1995) Biological membranes. Architecture and function, in Handbook of Biological Physics: Structure and dynamics of membranes. From cells to vesicles, vol. 1 (Lipowsky, R. and Sackmann, E., eds.), Elsevier Science B. V., Amsterdam, pp. 1–63.

    Chapter  Google Scholar 

  7. Bevers, E. M., Comfurius, P., Dekkers, D. W., Harmsma, M., and Zwaal, R. F. (1998) Transmembrane phospholipids distribution in blood cells: control mechanisms and pathophysiological significance. Biol. Chem. 379, 973–986.

    PubMed  CAS  Google Scholar 

  8. Op den Kamp, J. A. F. (1979) Lipid asymmetry in membranes. Ann. Rev. Biochem. 48, 47–71.

    Article  Google Scholar 

  9. Bolsover, S. R., Gómez, D., Fernández, J. C., and Corbalán-GarcÍa, S. (2003) Role of the Ca2+/phosphatidylserine binding region of the C2 domain in the translocation of protein kinase C alpha to the plasma membrane. J. Biol. Chem. 278, 10,282–10,290.

    Article  PubMed  CAS  Google Scholar 

  10. Murray, D., Arbuzova, A., Hangyas-Mihalyne, G., et al. (1999) Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys. J. 77, 3176–3188.

    Article  PubMed  CAS  Google Scholar 

  11. de Vries, K. J., Wiedmer, T., Sims, P. J., and Gadella, B. M. (2003) Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol. Reprod. 68, 2122–2134.

    Article  PubMed  CAS  Google Scholar 

  12. Stubbs, C. D. (1983) Membrane fluidity: structure and dynamics of membrane lipids. Essays Biochem. 19, 1–39.

    PubMed  CAS  Google Scholar 

  13. Williamson, P. and Schlegel, R. A. (2004) Hide and seek: the secret of the phostidylserine receptor. J. Biol. 3, 14.

    Article  PubMed  Google Scholar 

  14. Kagan, V. E., Fabisiak, J. P., Shvedova, A. A., et al. (2000) Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 477, 1–7.

    Article  PubMed  CAS  Google Scholar 

  15. Daleke, D. L. (2003) Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 44, 233–242.

    Article  PubMed  CAS  Google Scholar 

  16. Bevers, E. M., Comfurius, P., Dekkers, D. W., and Zwaal, R. F. (1999) Lipid translocation across the plasma membrane of mammalian cells. Biochim. Biophys. Acta 1439, 317–330.

    PubMed  CAS  Google Scholar 

  17. Sahm, H., Rohmer, M., Bringer-Meyer, S., Sprenger, G. A., and Welle, R. (1993) Biochemistry and physiology of hopanoids in bacteria. Adv. Microb. Physiol. 35, 247–273.

    Article  PubMed  CAS  Google Scholar 

  18. Bloom M., Evans, E., and Mouritsen, O. G. (1991) Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Quart. Rev. Biophys. 24, 293–397.

    Article  CAS  Google Scholar 

  19. Holthuis J. C. and Levine, T. P. (2005) Lipid traffic: floppy drives and a superhighway. Nat. Rev. 6, 209–220.

    Article  CAS  Google Scholar 

  20. Perry, R. J. and Ridgway, N. D. (2005) Molecular mechanisms and regulation of ceramide transport. Biochim. Biophys. Acta 1734, 220–234.

    PubMed  CAS  Google Scholar 

  21. Hulbert, A. J., Turner, N., Storlien, L. H., and Else, P. L. (2005) Dietary fats and membrane function: implications for metabolism and disease. Biol. Rev. Cambridge Phil. Soc. 80, 155–169.

    Article  CAS  Google Scholar 

  22. Mukherjee, S. and Maxfield, F. R. (2000) Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211.

    Article  PubMed  CAS  Google Scholar 

  23. Rand, R. P. and Parsegian, V. A. (1989) Hydration forces between phopholipid bilayers. Biochim. Biophys. Acta 988, 371–376.

    Google Scholar 

  24. Israelachvili, J. N., Marčcelja, S., and Horn, R. G. (1980) Physical principles of membrane organization. Quar. Rev. Biophys. 13, 121–200.

    Article  CAS  Google Scholar 

  25. Mann, R. K. and Beachy, P. A. (2004) Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem. 73, 891–923.

    Article  PubMed  CAS  Google Scholar 

  26. Resh, M. D. (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem. 37, 217–232.

    PubMed  CAS  Google Scholar 

  27. Marsh, D., Horvath, L. I., Swamy, M. J., Mantripragada, S., and Kleinschmidt, J. H. (2002) Interactions of membrane-spanning proteins with peripheral and lipid-anchored membrane proteins: perspectives from protein-lipid interactions. Mol. Membr. Biol. 19, 247–255.

    Article  PubMed  CAS  Google Scholar 

  28. Ingham, P. W. (2001) Hedgehog signaling: a tale of two lipids. Science 294, 1879–1881.

    Article  PubMed  CAS  Google Scholar 

  29. McLaughlin, S., Hangyas-Mihlyne, G., Zaitseva, I., and Golebiewska, U. (2005) Reversible-through calmodulin-electrostatic interactions between basic residues on proteins and acidic lipids in the plasma membrane. Biochem. Soc. Symp. 72, 189–198.

    PubMed  CAS  Google Scholar 

  30. de Planque, M. R. and Killian, J. A. (2003) Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol. Membr. Biol. 20, 271–284.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, A. M. (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40.

    Article  PubMed  CAS  Google Scholar 

  32. Seelig, J. and Seelig, A. (1980) Lipid conformation in model membranes and biological membranes. Quart. Rev. Biophys. 13, 19–61.

    Article  CAS  Google Scholar 

  33. Mouritsen, O. G. (ed.) (2005) Life-As a matter of fact. The emerging science of lipidomics. Springer-Verlag, Berlin, Heildelberg, Germany.

    Google Scholar 

  34. Epand, R. M. (2004) Do proteins facilitate the formation of cholesterol-rich domains? Biochim. Biophys. Acta 1666, 227–238.

    Article  PubMed  CAS  Google Scholar 

  35. Marsh, D. and Pali, T. (2004) The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim. Biophys. Acta 1666, 118–141.

    PubMed  CAS  Google Scholar 

  36. Marsh, D. (2003) Lipid interactions with transmembrane proteins. Cell Mol. Life Sci. 60, 1575–1580.

    Article  PubMed  CAS  Google Scholar 

  37. Bechinger, B. (2000) Biophysical investigations of membrane perturbations by polypeptides using solid-state NMR spectroscopy. Mol. Membr. Biol. 17, 135–142.

    Article  PubMed  CAS  Google Scholar 

  38. Epand, R. M. and Epand, R. F. (2000) Modulation of membrane curvature by peptides. Biopolymers 55, 358–363.

    Article  PubMed  CAS  Google Scholar 

  39. Kazlauskaite, J. and Pinherio, T. J. (2005) Aggregation and fibrillization of prions in lipid membranes. Biochem. Soc. Symp. 72, 211, 212.

    PubMed  CAS  Google Scholar 

  40. Tamm, L. K., Hong, H., and Liang, B. (2004) Folding and assembly of beta-barrel membrane proteins. Biochim. Biophys. Acta 1666, 250–263.

    Article  PubMed  CAS  Google Scholar 

  41. Booth, P. J. and Curran, A. R. (1999) Membrane protein folding. Curr. Opin. Struct. Biol. 9, 115–121.

    Article  PubMed  CAS  Google Scholar 

  42. Epand, R. M. and Lester, D. S. (1990) The role of membrane biophysical properties in the regulation of protein kinase C activity. Trend Pharmacol. Sci. 11, 317–320.

    Article  CAS  Google Scholar 

  43. Jensen, M. O. and Mouritsen, O. G. (2004) Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 1666, 205–226.

    Article  PubMed  CAS  Google Scholar 

  44. de Planque, M. R. and Killian, J. A. (2003) Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol. Membr. Biol. 20, 271–284.

    Article  PubMed  CAS  Google Scholar 

  45. Dumas, F., Lebrun, M. C., and Tocanne, J. F. (1999) Is the protein/lipid hydrophobic mismatch principle relevant to membrane organization and functions? FEBS Lett. 458, 271–277.

    Article  PubMed  CAS  Google Scholar 

  46. Barrantes, F. J. (2002) Lipid matters: nicotinic acetylcholine receptor-lipid interactions. Mol. Membr. Biol. 19, 277–284.

    Article  PubMed  CAS  Google Scholar 

  47. Horvath, L. I., Arias, H. R., Hankovszky, H. O., Hideg, K., Barrantes, F. J., and Marsh, D. (1990), Association of spin-labeled local anesthetics at the hydrophobic surface of acetylcholine receptor in native membranes from Torpedo marmorata. Biochemistry 29, 8707–8713.

    Article  PubMed  CAS  Google Scholar 

  48. Andersen, O. S., Koeppe, R. E., 2nd., and Roux, B. (2005) Gramicidin channels. IEEE Trans. Nanobiosci. 4, 10–20.

    Article  Google Scholar 

  49. Aguillella, V. M. and Bezrukov, S. M. (2001) Alamethicin channel conductance modified by lipid charge. Eur. Biophys. J. 30, 233–241.

    Article  CAS  Google Scholar 

  50. Sansom, M. S. (1998) Models and simulations of ion channels and related membrane proteins. Curr. Opin. Struct. Biol. 8, 237–244.

    Article  PubMed  CAS  Google Scholar 

  51. Bechinger, B. (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156, 197–211.

    Article  PubMed  CAS  Google Scholar 

  52. Cascio, M. (2005) Connexins and their environment: effects of lipid composition on ion channels. Biochim. Biophys. Acta 1711, 142–153.

    Article  PubMed  CAS  Google Scholar 

  53. Romanenko, V. G., Rothblat, G. H., and Levitan, I. (2004) Sensitivity of volume-regulated anion current to cholesterol structural analogues. J. Gen. Physiol. 123, 77–87.

    Article  PubMed  CAS  Google Scholar 

  54. Crowley, J. J., Treistman, S. N. and Dopico A. M. (2003) Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers. Mol. Pharmacol. 64, 365–372.

    Article  PubMed  CAS  Google Scholar 

  55. Casado, M. and Ascher, P. (1998) Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J. Physiol. 513, 317–330.

    Article  PubMed  CAS  Google Scholar 

  56. Lundbæk, J. A. and Andersen, O. S. (1994) Lysophospholipids modulate ion channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104, 645–673.

    Article  PubMed  Google Scholar 

  57. Brown, M. F. (1997) Influence of nonlamellar-forming lipids on rhodopsin. Curr. Topics Membr. 44, 285–356.

    Article  CAS  Google Scholar 

  58. Epand, R. M. (1996) The properties and biological roles of non-lamellar forming lipids. Chem. Phys. Lipids 81, 101–264.

    Article  CAS  Google Scholar 

  59. Lohner, K. (1996) Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81, 167–184.

    Article  PubMed  CAS  Google Scholar 

  60. Seddom, J. M. and Templer, R. H. (1995) Polymorphism of lipid-water systems, in Handbook of Biological Physics: Structure and dynamics of membranes. From cells to vesicles, vol. 1 (Lipowsky, R. and Sackmann, E., eds.), Elsevier Science B. V., Amsterdam, pp. 97–160.

    Chapter  Google Scholar 

  61. Cherezov, V., Siegel, D. P., Shaw, W., Burgess, S. W., and Caffrey, M. (2003) The kinetics of non-lamellar phase formation in DOPE-Me: relevance to biomembrane fusion. J. Membr. Biol. 195, 165–182.

    Article  PubMed  CAS  Google Scholar 

  62. Hafez, I. M. and Cullis, P. R. (2001) Roles of lipid polymorphism in intracellular delivery. Adv. Drug Deliv. Revs. 47, 139–148.

    Article  CAS  Google Scholar 

  63. Epand, R. M. (1990) Relationship of phospholipids hexagonal phases to biological phenomena. Biochem. Cell Biol. 68, 17–23.

    Article  PubMed  CAS  Google Scholar 

  64. Peng, J. B., Barnes, G. T., and Gentic, I. R. (2001) The structures of Langmuir-Blodgett films of fatty acids and their salts. Adv. Colloid. Interface Sci. 25, 163–219.

    Article  Google Scholar 

  65. Cevc, G. (ed.) (1993) Phospholipids Handbook. Marcel Dekker Inc., New York, NY.

    Google Scholar 

  66. Fang, Y., Frutos, A. G., and Lahiri, J. (2002) Membrane protein microarrays. J. Am. Chem. Soc. 124, 2394–2395.

    Article  PubMed  CAS  Google Scholar 

  67. Nagle, J. F. and Tristram-Nagle, S. (2000) Structure of lipid bilayers. Biochim. Biophys. Acta 1469, 159–195.

    PubMed  CAS  Google Scholar 

  68. Cruzeiro-Hansson, L., Ipsen, J. H., and Mouritsen. (1989) Intrinsic molecules in lipid membranes change the lipid-domain interfacial area: cholesterol at domain interfaces. Biochim. Biophys. Acta 979, 166–176.

    Article  PubMed  CAS  Google Scholar 

  69. Evans, E. A. (1989) Structure and deformation properties of red blood cells: concepts and quantitative methods. Methods Enzymol. 173, 3–35.

    Article  PubMed  CAS  Google Scholar 

  70. Siegel, D. P. and Kozlov, M. M. (2004) The Gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J. 87, 366–374.

    Article  PubMed  CAS  Google Scholar 

  71. Vereb, G., Szollosi, J., Matko, J., et al. (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad Sci. USA 100, 8053–8058.

    Article  PubMed  CAS  Google Scholar 

  72. Tieleman, D. P., Marrink, S. J., and Berendsen, H. J. C. (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta 1331, 235–270.

    PubMed  CAS  Google Scholar 

  73. Cantor, R. S. (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76, 2625–2639.

    Article  PubMed  CAS  Google Scholar 

  74. Marsh, D. (1996) Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183–223.

    PubMed  CAS  Google Scholar 

  75. Cantor, R. S. (1997) The lateral pressure profile in membranes: a physical mechanism of anesthesia. Biochemistry 36, 2339–2344.

    Article  PubMed  CAS  Google Scholar 

  76. Regen, S. L. (2002) Lipid-lipid recognition in fluid bilayers: solving the cholesterol mystery. Curr. Opin. Chem. Biol. 6, 729–735.

    Article  PubMed  CAS  Google Scholar 

  77. Deveaux, P. F. and Morris, R. (2004) Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5, 241–246.

    Article  Google Scholar 

  78. Simmons, K. and Vaz, W. L. C. (2004) Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295.

    Article  CAS  Google Scholar 

  79. Vereb, G., Szollosi, J., Matko, J., et al. (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad. Sci. USA 100, 8053–8058.

    Article  PubMed  CAS  Google Scholar 

  80. Brown, D. A. and London, E. (1998) Structure and origin of ordered lipid domains in membranes. J. Membr. Biol. 164, 103–114.

    Article  PubMed  CAS  Google Scholar 

  81. Golub, T. and Pico, C. (2005) Spatial control of actin-based motility through plasmalemmal PtdIns(4,5)P2-rich raft assemblies. Biochem. Soc. Symp. 72, 119–127.

    PubMed  CAS  Google Scholar 

  82. Meiri, K. F. (2004) Membrane/cytoskeletal communication. Subcell Biochem. 37, 247–282.

    PubMed  CAS  Google Scholar 

  83. Luna, E. J. and Hitt, A. L. (1992) Cytoskeleton-plasma membrane interactions. Science 258, 955–963.

    Article  PubMed  CAS  Google Scholar 

  84. Mukherjee, S. and Maxfield, F. R. (2000) Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211.

    Article  PubMed  CAS  Google Scholar 

  85. Holowka, D., Gosse, J. A., Hammond, A. T., et al. (2005) Lipid segregation and IgE receptor signaling: a decade of progress. Biochim. Biophys. Acta 1746, 252–259.

    Article  PubMed  CAS  Google Scholar 

  86. Golub, T., Wacha, S., and Caroni, P. (2004) Spatial and temporal control of signaling through lipid rafts. Curr. Opin. Neurobiol. 14, 542–550.

    Article  PubMed  CAS  Google Scholar 

  87. Martens, J. R., O’Connell, K., and Tamkun, M. (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends Pharmacol. Sci. 25, 16–21.

    Article  PubMed  CAS  Google Scholar 

  88. Szabo, I., Adams, C., and Gulbins, E. (2004) Ion channels and membrane rafts in apoptosis. Pflügers Arch. 448, 304–312.

    Article  PubMed  CAS  Google Scholar 

  89. Alonso, M. A. and Millan, J. (2001) The role of lipid rafts in signaling and membrane trafficking in T lymphocytes. J. Cell Sci. 114, 3957–3965.

    PubMed  CAS  Google Scholar 

  90. Simmons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  CAS  Google Scholar 

  91. Grzybek, M., Kozubek, A., Dubiclecka, P., and Sikorski, A. F. (2005) Rafts-the current picture. Folia Histochem. Cytobiol. 43, 3–10.

    PubMed  CAS  Google Scholar 

  92. Allende, D., Vidal, A., and McIntosh, T. J. (2004) Jumping to rafts: gatekeeper role of bilayer elasticity. Trends Biochem. Sci. 29, 325–330.

    Article  PubMed  CAS  Google Scholar 

  93. Harris, T. J. and Siu, C. H. (2002) Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays 24, 996–1003.

    Article  PubMed  CAS  Google Scholar 

  94. O’Shea, P. (2005) Physical landscapes in biological membranes: physico-chemical terrains for spatio-temporal control of biomolecular interactions and behaviour. Phil. Trans. Royal Soc. Lond. Series A 363, 575–588.

    Article  CAS  Google Scholar 

  95. Stan, R. V. (2005) Structure of caveolae. Biochim. Biophys. Acta 1746, 334–348.

    Article  PubMed  CAS  Google Scholar 

  96. Ostrom, R. S. and Insel, P. A. (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br. J. Pharmacol. 143, 235–245.

    Article  PubMed  CAS  Google Scholar 

  97. Marx, J. (2001) Caveolae: a once-elusive structure gets some respect. Science 294, 1861–1866.

    Article  Google Scholar 

  98. Li, X. A., Everson, W. V., and Smart, E. J. (2005) Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc. Med. 15, 92–96.

    Article  PubMed  CAS  Google Scholar 

  99. Bouras, T., Lisanti, M. P., and Pestell, R. G. (2004) Caveolin-1 in breast cancer. Cancer Biol. Ther. 3, 931–941.

    Article  PubMed  CAS  Google Scholar 

  100. Cohen, A. W., Hnasko, R., Schubert, W., and Lisanti, M. P. (2004) Role of caveolae and caveolins in health and disease. Physiol. Rev. 84, 1341–1379.

    Article  PubMed  CAS  Google Scholar 

  101. Chicani, G., Zhu, W., and Smart, E. J. (2004) Lipids: potential regulators of nitric oxide generation. Am. J. Physiol. Endocrinol. Metab. 287, E386–E389.

    Article  Google Scholar 

  102. Bathori, G., Cervenak, L., and Karadi, I. (2004) Caveolae-an alternative endocytotic pathway for targeted drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 21, 67–95.

    Article  PubMed  Google Scholar 

  103. Lee, A. G. (2004) How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87.

    Article  PubMed  CAS  Google Scholar 

  104. Cristea, I. M. and Degli Esposi, M. (2004) Membrane lipids and cell death: an overview. Chem. Phys. Lipids 129, 133–160.

    Article  PubMed  CAS  Google Scholar 

  105. Futerman, A. H. and Hannun, Y. A. (2004) The complex life of simple sphingolipids. EMBO Rep. 5, 777–782.

    Article  PubMed  CAS  Google Scholar 

  106. Bankaitis, V. A. and Morris, A. J. (2003) Lipids and the exocytotic machinery of eukaryotic cells. Curr. Opin. Cell Biol. 15, 389–395.

    Article  PubMed  CAS  Google Scholar 

  107. Edidin, M. (2003) Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 4, 414–418.

    Article  PubMed  CAS  Google Scholar 

  108. Gruenberg, J. (2003) Lipids in endocytic membrane transport and sorting. Curr. Opin. Cell Biol. 15, 383–388.

    Article  CAS  Google Scholar 

  109. Tillman, T. S. and Cascio, M. (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem. Biophys. 38, 161–190.

    Article  PubMed  CAS  Google Scholar 

  110. Wallis, J. G. and Browse, J. (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog. Lipid Res. 41, 254–278.

    Article  PubMed  CAS  Google Scholar 

  111. Goni, F. M., Contreras, F. X., Montes, L. R., Sot, J., and Alonso, A. (2005) Biophysics (and sociology) of ceramides. Biochem. Soc. Symp. 72, 177–188.

    PubMed  CAS  Google Scholar 

  112. Bouwstra, J. A., Honewell-Nguyen, P. L., Gooris, G. S., and Ponec, M. (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 42, 1–36.

    Article  PubMed  CAS  Google Scholar 

  113. Suh, B. C. and Hille, B. (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370–378.

    Article  PubMed  CAS  Google Scholar 

  114. Tigyi, G. and Parrill, A. L. (2003) Molecular mechanisms of lysophosphatidic acid action. Prog. Lipid Res. 42, 498–526.

    Article  PubMed  CAS  Google Scholar 

  115. Ishii, S., Nagase, T., and Shimizu, T. (2002) Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat. 68–69, 599–609.

    Article  PubMed  Google Scholar 

  116. Chalfant, C. E. and Spiegel, S. (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell Sci. 118, 4605–4612.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Dopico, A.M., Tigyi, G.J. (2007). A Glance at the Structural and Functional Diversity of Membrane Lipids. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics